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bstract

This study considers the stability of two stratified immiscible incompressible fluids in a horizontal channel of infinite extent. Of
articular interest is the case with the heavier fluid initially lying above the lighter fluid, so that the system is susceptible to the
lassical Rayleigh–Taylor instability. An electric field acting in the horizontal direction is imposed on the system and it is shown that
t can act to completely suppress Rayleigh–Taylor instabilities and produces a dispersive regularization in the model. Dispersion
elations are derived and a class of nonlinear traveling waves (periodic and solitary) is computed. Numerical solutions of the initial
alue problem of the system of model evolution equations that demonstrate a stabilization of Rayleigh–Taylor instability due to the
lectric field are presented.

2010 IMACS. Published by Elsevier B.V. All rights reserved.
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. Introduction

Electric fields acting parallel to an interface separating two immiscible fluids of different material properties, have
een shown to induce a dispersive effect (Melcher and Schwarz [8], Tilley et al. [10], Papageorgiou and Vanden-Broeck
9]). Such effects on Rayleigh–Taylor (R–T) instabilities have not been studied systematically. Further more in inviscid
–T flows, a finite-time singularity is encountered (Baker et al. [1]) and the effect of electric field regularization is
n interesting physical mechanism that can affect such phenomena. In the related problem of liquid sheet rupture, it
as been shown by Tilley et al. [10] that rupture singularities can be delayed or completely suppressed by sufficiently
trong electric fields. Such a paradigm is investigated here for the R–T problem. In the case of background shear,
elvin–Helmholtz (K–H) instabilities are present and produce larger short-wave growth rates as compared to R–T

nstability. The effect of horizontal electric fields on K–H flows has been considered by Grandison et al. [5,6], who
tudied nonlinear model equations as well as numerical traveling wave solutions of the two-dimensional Euler equations,
Please cite this article in press as: L.L. Barannyk, et al., Suppression of Rayleigh–Taylor instability using electric fields, Math.
Comput. Simul. (2011), doi:10.1016/j.matcom.2010.11.015

hen the field is strong enough so as to provide a stabilization in conjunction with surface tension. Fields which act
erpendicularly to the undisturbed interface, on the other hand, are unstable at least for the regimes of perfect conductors
r perfect dielectric fluids. For example, a vertical field can destabilize a (stably stratified) viscous fluid layer wetting
he top surface of a horizontal substrate, and cause asymptotic thinning of the layer – Tseluiko and Papageorgiou [13]
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Fig. 1. Schematic of the problem.

(for inclined substrates see Tseluiko and Papageorgiou [11,12]). Also of interest is the study of Gleeson et al. [4], who
present a novel electrohydrodynamics derivation of the Benjamin–Ono Kortweg–de Vries equation.

The paper is organized as follows: Section 2 introduces the governing equations and boundary conditions. Section
3 considers the linear stability problem and gives the dispersion relation, while Section 4 derives asymptotically a
system of nonlinear evolution equations valid for thin upper layers. Section 5 constructs and computes traveling wave
solutions of these equations, with finite as well as infinite wavelengths (solitary waves in the latter case). Section 6
addresses numerically the initial value problems of the system of model evolution equations.

2. Mathematical model

Two immiscible, inviscid, irrotational and incompressible fluids with densities ρ1, ρ2 are bound together in an infinite
horizontal channel of depth Du and separated by an interface given by y = H(x, t) in a Cartesian coordinate system,
where t is time – see the schematic in Fig. 1. The fluids are assumed to be perfect dielectrics with electrical permittivities
ε1 and ε2 and the surface tension coefficient between them is σ. The lower fluid occupies region 1 given by 0 < y < H(x,
t) and the upper fluid is in region 2 given by H(x, t) < y < Du. A uniform horizontal electric field E0 = (V0/D)î acts,
with V0 the characteristic voltage drop and D is the undisturbed depth of the lower layer. Gravity acts in the negative y-
direction with acceleration g. The hydrodynamics are governed by Euler’s equations which can be represented in terms
of harmonic fluid potentials φ1 and φ2, say, with the fluid velocity fields given by u1,2 = ∇φ1,2. The electrodynamics
derives from the electrostatic limit of Maxwell’s equations. Briefly, since the induced magnetic fields are negligible,
Faraday’s law reads ∇ × E1,2 = 0 where E1,2 is the electric field in each region, and hence we can introduce voltage
potentials V1,2 such that E1,2 = − ∇V1,2. In addition, since there are no volumetric charge concentrations in the fluids,
Gauss’s law becomes ∇ · (ε1,2E1,2) = 0, which combined with Faraday’s law implies that V1 and V2 are also harmonic
functions. The field equations are, then

�φ1,2 = 0, �V1,2 = 0, (1)

where � ≡(∂/∂ x2) +(∂/∂ y2). The boundary conditions at y = H(x, t) are the kinematic conditions, continuity of normal
stresses, continuity of the normal component of the displacement field εE and continuity of the tangential component
of the electric field:

Ht + φ1xHx − φ1y = 0, Ht + φ2xHx − φ2y = 0, (2)

[n · T · n]1
2 = σ∇ · n, (3)

[εE · n]1
2 = 0, n × [E]1

2 = 0, (4)

where [·]1
2 denotes the jump in the quantity as the interface is crossed from the lower to the upper fluid, n =

(−Hx, 1)/(1 + H2
x )

1/2
, t = (1, Hx)/(1 + H2

x )
1/2

are the unit normal (pointing out of region 1) and tangent to the
Please cite this article in press as: L.L. Barannyk, et al., Suppression of Rayleigh–Taylor instability using electric fields, Math.
Comput. Simul. (2011), doi:10.1016/j.matcom.2010.11.015

interface, respectively. The stress tensor T is given by

Tij = −pδij + Eij, Eij = ε

(
EiEj − 1

2
|E|2δij

)
. (5)

dx.doi.org/10.1016/j.matcom.2010.11.015
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he first term in Tij is the inviscid hydrodynamic contribution and the second term represents the Maxwell stresses
Jackson ([7], Chap. 6). The analysis proceeds by integrating the Euler equations to obtain a Bernoulli equation at
= H(x, t). The pressure jump across the interface is then eliminated using (3) to yield a nonlinear dynamic interfacial
oundary condition given by (11) in dimensionless form. Finally, the boundary conditions on the channel walls are a
o penetration condition for the hydrodynamics and no vertical component of the electric field for the electrostatics:

φ1y = V1y = 0 at y = 0, φ2y = V2y = 0 at y = Du. (6)

orizontally far away from any interfacial disturbances, the electric field tends to its unperturbed value so that

Vjx → E0|x|, as |x| → ∞, j = 1, 2. (7)

ariables are made dimensionless by scaling lengths by D, fluid potentials by D(gD)1/2, time by (D/g)1/2 and voltages
y V0 (these scalings have been chosen so as to retain gravitational effects in the model and to be able to switch
urface tension and electric field effects on or off directly). In what follows we use the same symbols as before for
imensionless quantities. The following dimensionless groups emerge

ρ = ρ2

ρ1
, εp = ε2

ε1
, Eb = ε1V

2
0

ρ1gD3 , We = σ

ρ1gD2 , H0 = Du

D
, (8)

hich represent the density and permittivity ratios, an electric Weber number Eb measuring the strength of the electric
eld, a Weber number We based on the velocity (gD)1/2 which is the ratio of surface tension forces to gravitational
orces (this is also an inverse Bond number), and the dimensionless channel height H0. In terms of dimensionless
ariables, Eqs. (1) and boundary conditions (2) and (6) remain unaltered; Eqs. (4) become

V1xHx − V1y = εp

(
V2xHx − V2y

)
at y = H(x, t), (9)

V1x + V1yHx = V2x + V2yHx at y = H(x, t). (10)

inally, a Bernoulli equation at y = H(x, t) is derived as follows. The x- and y-momentum equations of the Euler
quations are written in terms of the fluid potential φ1,2 in each respective region, are integrated with respect to x and
, respectively, and evaluated at the interface in order to obtain an expression for the pressure jump across the interface
n terms of φ1,2 and their derivatives (the integrals resulting from the x and y integrations are ultimately identical). The
ernoulli equation emerges by eliminating the pressure jump through the use of the normal stress balance (3), which
ow brings in electric, surface tension and gravitational effects (for more details see Grandison et al. [5]). The resulting
quation is

φ1t + 1

2
(φ1x)2 + 1

2
(φ1y)2 − ρ

(
φ2t + 1

2
(φ2x)2 + 1

2
(φ2y)2

)
− (ρ − 1)H = We

Hxx

(1 + H2
x )3/2

− Eb

2
(V 2

1x − V 2
1y)

H2
x − 1

1 + H2
x

+ εpEb

2
(V 2

2x − V 2
2y)

H2
x − 1

1 + H2
x

+ 2Eb

Hx

1 + H2
x

V1xV1y

− 2εpEb

Hx

1 + H2
x

V2xV2y + K̄p, (11)

here the constant of integration K̄p = −(ρ − 1) − Eb

2 (1 − εp) has been determined by evaluating (11) using the
ndeformed steady-state H = 1, V1,2 = x, φ1,2 = 0. It can be seen from (11) that the electric field or surface tension can
e removed by selecting Eb or We to vanish.

The nonlinear moving boundary problem formulated in this section presents a formidable analytical and computa-
ional task and we proceed to explore some of its mathematical and physical properties.

. Linear stability analysis
Please cite this article in press as: L.L. Barannyk, et al., Suppression of Rayleigh–Taylor instability using electric fields, Math.
Comput. Simul. (2011), doi:10.1016/j.matcom.2010.11.015

Flat interface quiescent flows are exact solutions of the mathematical model given above. We write these stationary
tates as

u1,2 = 0, H = 1, V1,2 = x. (12)

dx.doi.org/10.1016/j.matcom.2010.11.015
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Fig. 2. The dispersion relation as Eb varies (values shown); other parameters are ρ = 2, εp = 2, H0 = 2. (a) We = 0, no surface tension. (b) Surface
tension present, We = 1.

To study the stability of this state we write u1,2 = δũ1,2, H(x, t) = 1 + δH̃(x, t), and V1,2 = x + δṼ1,2, where δ is
infinitesimal, and linearize the boundary conditions in the usual way evaluating all tilde variables at the undisturbed
level y = 1. We introduce normal mode solutions:

φ̃1,2 = φ̂1,2(y)eikx+ωt, Ṽ1,2 = V̂1,2(y)eikx+ωt, H̃(x, t) = Ĥeikx+ωt, (13)

where it is understood that the real part is to be taken. Substitution of (13), after solving for φ̂1,2, V̂1,2 in terms of
exponential functions, into the linearized kinematic, Bernoulli and electric field boundary conditions at the undisturbed
level y = 1, along with the boundary conditions on walls y = 0 and y = H0, yields five homogeneous equations for
constants of integration involved in φ̂1,2, V̂1,2 and the constant Ĥ. The condition for non-trivial solutions leads to the
following dispersion relation:

ω2

k

(
coth k − ρ

cosh k − tanh(kH0) sinh k

sinh k − tanh(kH0) cosh k

)
− (ρ − 1)

= −Wek
2 + Ēbk[cosh k − tanh(kH0) sinh k]

−(1 − εp) sinh k − εp tanh(kH0) cosh k + tanh(kH0)(sinh2 k/ cosh k)
(14)

where Ēb = (1 − εp)2Eb. The first term on the right hand side of (14) represents surface tension and the second term
electric field effects. In the absence of both, it is clear that real positive values of ω are possible if ρ > 1, and hence
the flow is unstable as expected. The dispersion relation (14) extends that in Papageorgiou and Vanden-Broeck [9] by
adding gravity and density stratification to their problem as well as a bounded upper layer. In fact, if we let H0 → ∞,
set ρ = 0 and remove gravity by eliminating the term with (ρ − 1), equation (14) reduces to

ω2 = −Wek
3 tanh k − Eb(1 − εp)2k2 tanh k

tanh k + εp

, (15)

in complete agreement with Papageorgiou and Vanden-Broeck [9].
To observe the stabilizing effect of the electric field it is useful to analyze (14) in the short-wave limit, k � 1. It can

be shown that (we use the fact that H0 > 1 here)

ω2 = (ρ − 1)

(ρ + 1)
k − We

k3

(ρ + 1)
− Eb(1 − εp)2

(ρ + 1)(1 + εp)
k2, k � 1. (16)

If ρ < 1 the system is stable to short waves but when ρ > 1 (heavy fluid on top) a short-wave R–T instability follows.
Surface tension regularizes this instability as seen from the −Wek3/(ρ + 1) term in (14). If surface tension is absent
(We = 0), (16) shows that the electric field is capable of stabilizing short waves; this is a novel physical regularization
of R–T instability and is found in K–H (see Grandison et al. [6]). A sufficiently large electric field can stabilize R–T
instability for all wavenumbers and evidence for this comes from the long wave limit (k � 1) of (14)- this is not
included here but numerical results are given. Fig. 2 summarizes these findings; in panel (a) we take zero surface
Please cite this article in press as: L.L. Barannyk, et al., Suppression of Rayleigh–Taylor instability using electric fields, Math.
Comput. Simul. (2011), doi:10.1016/j.matcom.2010.11.015

tension, We = 0, and ρ = 2, εp = 2 and H0 = 2, and plot the variation of ω2 with k as Ēb increases from zero. It can be
seen that the band of unstable waves decreases with increasing Ēb and in fact disappears completely when Ēb is larger
than 3.0, approximately. When surface tension is included (We = 1) the stability is enhanced as seen from the results in
panel (b) of Fig. 2.

dx.doi.org/10.1016/j.matcom.2010.11.015
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Analogous results are found for other values of H0 as well and in particular H0 near unity. Writing H0 = 1 + ε where
< ε � 1, we can analyze (14) asymptotically in ε to find

ω2ρ = (ρ − 1)k2 − Wek
4 − Ēbk

3 coth k, (17)

long with its long-wave version (k � 1)

ω2ρ = (ρ − 1)k2 − Wek
4 − Ēbk

2. (18)

he dispersion relations (17) and (18) suggest that a system of model dispersive evolution equations is possible if Ēb is
ufficiently large (non-local and local ones, respectively). Next, we sketch the derivation of such models and construct
onlinear traveling wave solutions of the local model as well as study the dynamics of the local model by solving initial
alue problems on periodic domains.

. Evolution equations for thin upper layers

Given a dimensionless undisturbed upper layer thickness ε, we look for interfacial waves whose amplitude scales
ith ε but have order one wavelengths, i.e. the waves are long with respect to the upper layer thickness but of comparable

ength with the lower layer thickness. We separate vertical scales by introducing a new upper layer variable ζ given by

y = 1 + ε − εζ. (19)

he disturbed interface is given by H(x, t) = 1 + εS(x, t) with S(x, t) to be found (ζ = 0 on the upper wall and ζ = 1 − S(x,
) at the interface). Time is scaled according to τ = ε1/2t- this comes from a balance of unsteadiness and nonlinearity in
he Bernoulli equation. The relevant expansions for the fluid and voltage potentials are

φ1 = ε1/2(φ(0)
1 + ε2φ

(2)
1 + . . .), φ2 = ε1/2(φ(0)

2 + ε2φ
(2)
2 + . . .), (20)

V1 = x + εV
(1)
1 + . . . , V2 = x + εV

(1)
2 + . . . . (21)

here the x terms in (21) represent the background voltage potentials. The solution in the film simplifies due to the fact
hat � ≡(∂ 2/∂ x2) + (1/ε2)( ∂ 2/∂ ζ2); we find φ

(0)
2 = B(x, τ) and φ

(2)
2 = −ζ2/(2Bxx), where B(x, τ) is to be determined.

he second kinematic condition (2) yields

Sτ + ((S − 1)Bx)x = 0. (22)

he solution of �V2 = 0 subject to the boundary condition V2y = 0 at y = H0 gives, to leading order, V
(1)
2 = C(x, τ)

ith C(x, t) to be determined. The problem for φ
(0)
1 becomes �φ

(0)
1 = 0 subject to φ

(0)
1y (x, 1, τ) = φ

(0)
1y (x, 0, τ) = 0 (this

ondition comes from continuity of normal components of velocity, ∇φ1 · n = ∇φ2 · n at the interface); the solution is
(0)
1 ≡ const., and this simplifies the Bernoulli equation significantly. The Maxwell stresses in the Bernoulli equation
11) can be expressed, to leading order in ε, in terms of region 2 potentials alone, i.e. C(x, τ), by using the electric field
oundary conditions (9) and (10) yielding

(1 − εp)Sx = V
(1)
1y , V

(1)
1x = V

(1)
2x at ζ = 1 − S(x, τ). (23)

he Bernoulli equation becomes, to leading order:

−ρ

(
φ

(0)
2τ + 1

2
(φ(0)

2x )
2
)

− (ρ − 1)S = WeSxx + Eb(1 − εp)Cxx. (24)

t remains to calculate C(x, τ) in terms of S(x, t). The harmonic problem for V
(1)
1 has boundary conditions V

(1)
1y (x, 0, τ) =

and V
(1)(x, 1, τ) = (1 − εp)Sx (along with periodicity in x), and is readily solved in Fourier space to obtain V̂

(1) =
Please cite this article in press as: L.L. Barannyk, et al., Suppression of Rayleigh–Taylor instability using electric fields, Math.
Comput. Simul. (2011), doi:10.1016/j.matcom.2010.11.015

1y 1

i(1 − εp)Ŝ/ sinh k) cosh ky, with hats denoting the usual Fourier transform operator. Using the second of conditions
23) immediately yields

Ĉ = i(1 − εp)(coth k) Ŝ. (25)

dx.doi.org/10.1016/j.matcom.2010.11.015
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Introducing new variables

η(x, τ) = 1 − S(x, τ), u(x, τ) = Bx(x, τ), (26)

representing the scaled upper layer thickness and the horizontal velocity at the interface, respectively, casts the model
system into

ητ + (ηu)x = 0, (27)

ρ (uτ + uux) − (ρ − 1)ηx = Weηxxx − Eb(1 − εp)Cxx, (28)

Ĉ = −i(1 − εp)(coth k)η̂. (29)

The model (27)–(29) is non-local but in the long wave limit (k � 1) it localizes to

ητ + (ηu)x = 0 (30)

ρ (uτ + uux) + βηx = Weηxxx (31)

where β = Eb(1 − εp)2 − (ρ − 1). Note that ρ can be removed from the first term of (31) through the transformation
u → u/

√
ρ and ∂/∂τ → (1/

√
ρ)∂/∂τ, and this is used in some of the numerical work that follows.

Note that when there is no electric field the model equations, both non-local and local, reduce to shallow water
equations in the presence of surface tension.

5. Traveling waves

Looking for solutions of (30) and (31) in the form η = η(x − cτ), u = u(x − cτ) and defining ξ = x − cτ, yields

−cη′ + (ηu)′ = 0 (32)

ρ(−cu′ + 1

2
(u2)

′
) + βη′ = Weη

′′′, (33)

where primes denote ξ-derivatives. This system can be integrated twice to yield the single nonlinear ODE

We

(
dη

dξ

)2

= βη3 − (ρc2 + B)η2 − Dη − ρA2

η
≡ f (η), (34)

where A, B and D are constants of integration. Existence of spatially periodic traveling waves hinges on the construction
of periodic profiles of (34). Some physical restrictions are that the range of η must satisfy 0 < η < 1 and β > 0 even if
ρ > 1. Zeros of the polynomial P3(η) = βη3 − (ρc2 + B)η2 − Dη − ρA2 correspond to local maxima or minima of η(ξ)
and we require two successive real roots in 0 < η < 1 between which P3(η) is positive; since β > 0, the three admissible
real roots can be ordered as 0 < η1 < η2 ≤ η3 with η2 < 1. Then, η1 and η2 are the wave trough and crest, respectively,
and we can implicitly obtain the profile from the quadrature:∫ η

η1

dη̃√
f (η̃)

= ξ. (35)

It is easy to show that even though f(η1) = f(η2) = 0, the integral (35) is not singular – in fact, 1/
√

f∼1/(η − η1)1/2

with a similar behavior at η2, and the singularities are integrable. The wavelength L is

L = 2
∫ η2

η1

dη√
f (η)

= 2√
β

∫ η2

η1

√
η

(η − η1)(η2 − η)(η3 − η)
dη = 4η1√

βη2(η3 − η1)
�(α2, k), (36)

where α2 = (η2 − η1)/η2, k2 = η3/(η3 − η1)α2 and �(α2, k) is the complete elliptic integral of the third kind. We note
that η1, η2, η3 can be found in closed form using the results documented in Bronshtein et al. [2], for example. When
η = η < 1, the length tends to infinity and a solitary wave emerges. This can also be seen from (35) because the root η
Please cite this article in press as: L.L. Barannyk, et al., Suppression of Rayleigh–Taylor instability using electric fields, Math.
Comput. Simul. (2011), doi:10.1016/j.matcom.2010.11.015

3 2 2
is now repeated. Writing f(η) = (β/η)(η − η1)(η − η2)2 implies that the conditions 2η2 + η1 = (ρc2 + B)/β, η2

2 + 2η1η2 =
−(D/β) and η1η

2
2 = (ρA2/β) must be satisfied, and the constants A, B, c, D must be chosen so that the constraint

0 < η1 < η2 < 1 holds. Therefore, it is easy to show using elementary methods that we can have waves of finite periods as
well as solitary ones, depending on the parameters. In Fig. 3 we give solutions from two such typical cases; the figure

dx.doi.org/10.1016/j.matcom.2010.11.015
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ig. 3. The function f(η) and the corresponding traveling waves: (a) and (b) We = 1, β = ρ = 2, c = 1, A = 3/10, B = 10, D = − 8, leading to periodic
raveling waves. (c) and (d) We = 1, β = 2, ρ = 2, c = 1, A = 0.1268, B = 0, D = − 17/30 leading to solitary waves.

ncludes the variation of f(η) and the corresponding traveling wave solution η(ξ) computed using (35). Panels (a) and
b) correspond to periodic waves and the parameter values are We = 1, β = ρ = 2, c = 1, A = 3/10, B = 10, D = − 8. Panels
c) and (d) correspond to solitary waves with parameters We = 1, β = 2, ρ = 2, c = 1, A = 0.1268, B = 0, D = − 17/30.

. Numerical solutions of the initial value problem

We conclude by considering the dynamics of the system on 2π-periodic domains, i.e. we solve numerically the
roblem:

ητ + (ηu)x = 0 (37)

(uτ + uux) + βηx = Weηxxx, (38)

ith initial conditions given by

η(x, 0) = 1 + 0.3 cos(x), u(x, 0) = 0.3 sin(x). (39)

onditions (39) are chosen to preserve certain symmetries in the solutions, but the phenomena described next arise
or more general conditions also. Adaptive spectral methods are used to compute the dynamics to large times or until
here is a singular event as described next (see for example [10]). Two canonical cases are computed in order to present
he generic phenomena supported by the equations. The Weber number is taken to be We = 1/2 and in the first case we
ake β = − 1 while in the second β = 1. These choices are motivated by the linear theory of Section 3 and correspond
o a weak and strong electric field, respectively, as can be seen from the definition β = Eb(1 − εp)2 − (ρ − 1). When
= − 1 the linear Rayleigh–Taylor (R–T) instability is operational (we take ρ = 2 for definiteness, in all computations)
hereas as Eb increases to yield β = 1 we obtain a linear stabilization of R–T. The results of Fig. 4 follow the dynamics

nto the nonlinear regime. Panels (a)–(c) correspond to β = − 1 while panel (d) corresponds to β = 1. In the former
ase the electric field is not strong enough to suppress R–T and ηmin is seen to reach zero in finite time, with the flow
erminating in a finite time singularity (see panel (a)). The finite time touchdown is evident in panel (b) which follows
he spatiotemporal evolution of η(x, t) and interestingly the emerging touchdown shape consists of large drops separated
y smaller satellite drops, a nonlinear phenomenon observed in other similar contexts also (see for example the recent
Please cite this article in press as: L.L. Barannyk, et al., Suppression of Rayleigh–Taylor instability using electric fields, Math.
Comput. Simul. (2011), doi:10.1016/j.matcom.2010.11.015

eview paper by Craster and Matar [3]). The horizontal velocity u blows up as the singular time is approached and this
s clearly seen in panel (c) where large fluid velocities are found in the vicinity of the touchdown points. When Eb is
ncreased sufficiently so that β = 1, the R–T instability is suppressed and the system undergoes nonlinear oscillations
n time which are in fact quasi-periodic (this has been confirmed by constructing Poincaré maps – not shown). More

dx.doi.org/10.1016/j.matcom.2010.11.015
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Fig. 4. (a) Evolution of ηmin showing touchdown of the lower wall for the case We = 0.5 and β = − 1. (b) Corresponding evolution of η(x, τ). Interface
η is captured with time interval 0.5 units at τ = 0.2, 0.7, . . ., 4.7. (c) Corresponding evolution of the horizontal velocity u(x, τ). (d) Evolution of ηmin

in the stable regime with β = 1 and We = 0.5.

detailed numerics and analysis is needed to classify the singular solutions, but preliminary work indicates that the
structures are self-similar.

7. Discussion

This study shows theoretically and numerically that Rayleigh–Taylor instability can be removed by imposing a
sufficiently strong electric field, even in the absence of surface tension. Inviscid flows have been considered and the
fluids are taken to be perfect dielectrics. The asymptotic limit of a thin upper layer has been studied in detail and a
system of coupled evolution equations for the interfacial shape and the corresponding horizontal velocity, have been
derived. These equations support periodic traveling waves and also solitary waves. The stability of these waves is
left for a future investigation. Numerical solutions of the initial value problem on periodic domains show that when
Rayleigh–Taylor instability is active the model predicts wall touchdown in finite time; this can be suppressed by a
strong enough electric field and our numerical work indicates that the system evolves to time oscillatory nonlinear
motions in such cases.
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