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Abstract
Causality verification and enforcement is of great importance for performance evaluation of
electrical interconnects. We present two techniques based on Kramers-Krönig dispersion relations,
also called Hilbert transform relations, and construction of causal periodic continuations. The
first method employes periodic polynomial continuations, while the second approach constructs
Fourier continuations using a regularized singular value decomposition (SVD) method. Given
a transfer function sampled on a bandlimited frequency interval, non-periodic in general, both
approaches construct an accurate approximation on the given frequency interval by allowing the
function to be periodic on an extended domain. This allows one to significantly reduce (for
polynomial continuations) or even completely remove (for Fourier continuations) boundary arti-
facts that are due to the bandlimited nature of frequency responses. Using periodic continuations
eliminates the necessity of approximating the transfer function behavior at infinity in order to
compute Hilbert transform. The methods can be used to verify and enforce causality before
the frequency responses are employed for macromodeling. The performance of the methods is
analyzed and compared using moderately and highly non-smooth functions.
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I. Introduction

The design of high-speed interconnects requires systematic
simulations at different levels in order to evaluate overall elec-
trical system performance and avoid signal integrity problems
[8]. To conduct such simulations, one needs suitable models
of parts of the system that capture the relevant electromagnetic
phenomena that may affect the signal and power quality. Such
models are obtained either from direct measurements or full-
wave electromagnetic simulations in the form of discrete port
frequency responses that represent scattering, impedance, or
admittance transfer functions or transfer matrices in scalar
or multidimensional cases, respectively. Once frequency re-
sponses are available, a corresponding macromodel can be
derived using, for example, the Vector Fitting technique [5].
However, if the data are contaminated by errors, it may not
be possible to derive a good model. These errors may be

due to a noise in case of direct measurements or roundoff
and/or approximation errors occurring in full-wave numerical
simulations. Besides, these data are typically available over a
finite frequency range as discrete sets with a limited number
of samples. All this may affect the performance of the macro-
modeling algorithm resulting in non-convergence or inaccurate
models. Often the underlying cause of such behavior is the
lack of causality in a given set of frequency responses [12].

A system is causal if the output cannot precede the input.
For a linear time-translation invariant system with the impulse
response function h, this condition implies that h(t) = 0 for
t < 0. Causality can also be defined in the frequency domain.
Denote by H(w) the Fourier transform of h(t), which is also
called a transfer function of the system. Then the system is
said to be causal if a frequency response given by the transfer
function H(w) satisfies the dispersion relations also known as
Kramers-Krönig relations. The dispersion relations represent
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the fact that the real and imaginary parts of a causal function
are related through Hilbert transform. The dispersion relations
are very important in many areas of physics, science and
engineering. Applications in electronics include reconstruction
and correction [9] of measured data, delay extraction [6], esti-
mation of optimal bandwidth and data density using causality
checking [14] and causality enforcement techniques [10], [13],
[1], [3], [2] that is the subject of the present study.

The Hilbert transform that relates the real and imaginary
parts of a transfer function H(w) is defined on the infi-
nite domain which can be reduced to [0,∞) by symmetry
properties of H(w) in case if h(t) is real. However, the
frequency responses are usually available only over a finite
length frequency interval, so either the domain has to be
truncated or behavior of H(w) for w → ∞ needs to be
approximated. Either approach brings an approximation error.
Moreover, having bandlimited frequency responses causes
significant boundary artifacts. One of the approaches used is to
limit the class of transfer functions and assume that H(w) is
square integrable, which would require the function to decay at
infinity. Then the domain can be truncated with a small error or
asymptotic behavior of the transfer function at infinity can be
obtained. In some cases, H(w) is not bounded or even grows
at infinity. Then the generalized dispersion relations can also
be used [10] to decrease the dependence of H(w) on high
frequencies, and thus allow the domain truncation.

In this paper we take another approach and instead of
approximating the behavior of H(w) for large w or truncating
the domain, we construct a periodic continuation of H(w) by
requiring the transfer function to be periodic and causal in an
extended domain of finite length. In papers [1], [2], polynomial
periodic continuations are introduced to make a transfer func-
tion periodic on an extended frequency interval and smooth at
endpoints of the frequency interval. Once a periodic continua-
tion is constructed, the spectrally accurate FFT/IFFT routines
can be used to compute discrete Hilbert transform and enforce
causality. The accuracy of the approach depends primarily
on smoothness of the polynomial continuation or polynomial
degree. The method allows one to significantly reduce the
boundary artifacts compared to the computation of the Hilbert
transform of the given data without any continuation, which is
implemented in the function hilbert from the popular software
Matlab. The advantage of the method is that it uses raw
frequency responses on the original domain and, as a result,
does not produce any spurious oscillations there, the method
does not require a lot of data points and it is easy to implement.
At the same time using low order polynomials allows one to
detect only relatively large causality violations, for example,
at the order of 10−3, which may be enough for experimentally
obtained data where high accuracy is not expected.

To improve the smoothness of periodic continuations and,
thus, significantly reduce or completely eliminate boundary ar-
tifacts caused by using bandwidth limited frequency responses,
an idea of approximating the transfer function by Fourier series
in an extended domain was proposed in [3]. The approach
allows one to obtain extremely accurate approximations of the
given function on the original frequency interval. The causality
conditions are imposed directly on Fourier coefficients that

are then computed by solving an overdetermined linear sys-
tem using regularized Singular Value Decomposition (SVD)
method to address ill-conditioning of the problem. The method
does not require using FFT/IFFT routines to compute Hilbert
transform. The length of the extended domain can be varied
to improve performance of the method. The advantage of the
method is that it is extremely accurate and capable of detecting
very small causality violations close to the machine precision,
at the order of 10−13, and the uniform reconstruction error of
the transfer function on the entire original frequency interval
can be achieved, so it does not have boundary artifacts reported
in [11], [2].

In this paper we analyze and compare the performance of
the causality verification methods based on periodic polyno-
mial and Fourier continuations for moderately and highly non-
smooth functions. We show that when frequency responses are
represented by smooth or moderately non-smooth function,
Fourier continuation based approach is much more accurate
than the polynomial continuation based method and allows
one to verify causality with the accuracy close to the machine
precision as well as detect causality violations of amplitude
close to the machine precision. When a transfer function is
wildly oscillatory and has high slope regions, the polynomial
continuation based method has relatively small error, while
Fourier continuation based approach develops Gibbs like os-
cillations due to singularities in the transfer function.

The paper is organized as follows. Section II gives back-
ground on causality, dispersion relations and motivation for
the proposed method. In Section III we briefly mention how
causal polynomial continuations are constructed as well as
present main steps in the derivation of causal spectrally
accurate Fourier continuations using a truncated singular value
decomposition (SVD). In Section IV, both methods are applied
to moderately and highly non-smooth transfer functions to
compare the performance of these methods. Finally, in Section
V we present our conclusions.

II. Causality for Linear Time-Translation Invariant
Systems

Consider a linear and time-invariant physical system with
the impulse response h(t, t′) subject to a time-dependent input
f(t), to which it responds by an an output x(t). Linearity
of the system and time-translation invariance imply that the
response x(t) can be written as the convolution of the input
f(t) and the impulse response h(t− t′) [7]

x(t) =

∫ ∞
−∞

h(t− t′)f(t′)dt′ = h(t) ∗ f(t). (II.1)

Denote by

H(w) =

∫ ∞
−∞

h(τ) e−iwτ dτ (II.2)

the Fourier transforms of h(t), also called a transfer function.
For multidimensional systems, transfer matrices are considered
instead. The proposed methods can be generalized by applying
them to each element of the transfer matrix.

The system is causal if the output cannot precede the input,
i.e. if f(t) = 0 for t < T , the same must be true for x(t).
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This condition implies h(τ) = 0, τ < 0, and (II.2) becomes

H(w) =

∫ ∞
0

h(τ) e−iwτ dτ. (II.3)

Note that the integral in (II.3) is extended only over a half-axis,
which implies that H(w) has a regular analytic continuation
in lower half of the w-plane.

If function h(t) is square integrable, i.e.
∫∞
0
|h(t)|2dt < C,

then H(w) is also square integrable. Application of Cauchy’s
theorem allows one to express H(w) for any point w on the
real axis as [7]

H(w) =
1

πi
−
∫ ∞
−∞

H(w′)

w − w′
dw′, real w, (II.4)

where

−
∫ ∞
−∞

= P

∫ ∞
−∞

= lim
ε→0

(∫ w−ε

−∞
+

∫ ∞
w+ε

)
denotes Cauchy’s principal value. Separating the real and
imaginary parts of (II.4), we get

ReH(w) =
1

π
−
∫ ∞
−∞

ImH(w′)

w − w′
dw′, (II.5)

ImH(w) = − 1

π
−
∫ ∞
−∞

ReH(w′)

w − w′
dw′. (II.6)

These expressions relate ReH and ImH of a causal function
and they are called the dispersion relations or Kramers-Krönig
relations. These formulas show that ReH and ImH of a
causal function are not independent of each other and ReH at
one frequency is related to ImH for all frequencies, and vice
versa. Choosing either ReH or ImH completely determines
another by causality. Recalling the definition of the Hilbert
transform

H[u(w)] =
1

π
−
∫ ∞
−∞

u(w′)

w − w′
dw′,

we see that ReH and ImH form a Hilbert transform pair,

ReH(w) = H[ImH(w)], ImH(w) = −H[ReH(w)]. (II.7)

In practice, the function H(w) may not be square integrable
or even bounded. It may also grow as O(wn), when |w| → ∞,
n = 0, 1, 2, . . .. Then dispersion relations with subtractions can
be used to modify the integrand and make it less dependent on
high frequencies. This approach is used in [7], [10] to verify
causality though it does not allow one to remove completely
boundary artifacts that are due to the absence of out of band
frequency responses.

We take an alternative approach motivated by an example of
the periodic function H(w) = e−iaw, a > 0, that is not square
integrable but still satisfies dispersion relations (II.5), (II.6).
In practice the transfer function H(w) given by frequency
responses at the discrete set of values over a bandlimited
interval is not periodic in general. The absence of out-of-band
frequency responses causes significant boundary artifacts since
dispersion relations require integration over the infinite do-
main. To overcome this problem, we construct causal periodic
continuations of H(w) in an extended domain of finite length
either using polynomial continuations or Fourier continuations.
These methods are explained in the next section.

III. Causal periodic continuations

The values of a transfer function H(w) obtained either from
numerical computations or direct measurements, are available
in a discrete form on a finite frequency interval [wmin, wmax],
where wmin ≥ 0. When wmin = 0 or wmin > 0, we
have baseband or bandpass case, respectively. Since equations
(II.5), (II.6) are homogeneous in the frequency variable, we
can rescale [wmin, wmax] to [a, 0.5] using the transformation
x = 0.5

wmax
w for convenience, where a = 0.5wminwmax

≥ 0.
The time domain impulse function h(t) is often real-valued.
Then the real and imaginary parts of H(w), as the Fourier
transform of h(t), are even and odd functions, respectively.
This implies that the values of the transfer function H(x) are
available on the unit interval x ∈ [−0.5, 0.5] by spectrum
symmetry if a = 0 or on [−0.5,−a] ∪ [a, 0.5] for a > 0.
Hilbert transform relations (II.7) allow one to choose either
ReH or ImH and then determine the other one by causality.
We fix ReH , an even function, and we want to reconstruct
ImH , an odd function. This choice avoids a possibility of
having an unknown constant on the right hand side of (II.5)
that is the limit of H(w) at infinity [9].

A. Polynomial periodic continuation

Starting from the rescaled transfer function H(x) =
ReH(x) + i ImH(x) whose values are available at xj ∈
[−0.5, 0.5], j = 1, . . . , N , (baseband case), the idea is to
construct a polynomial continuation of ReH , denoted by
Cm(ReH), that is periodic in an extended domain of length
b > 1. This new function is defined in [− b

2 ,
b
2 ], equals ReH in

[−0.5, 0.5] and given by an mth degree polynomial Pm(x), m
is even, outside [−0.5, 0.5]. The polynomial Pm is computed
by requiring continuity of Cm(ReH) and its corresponding
derivatives at x = ±0.5. Using higher m produces smoother
continuation. The period b of the continuation Cm(ReH) is
usually chosen as twice as big as the length of the original
domain, i.e. b = 2. Smaller values of b may be used when
H(x) develops high slopes in the boundary region.

In the bandpass case with a > 0, an even degree polynomial
P̃m(x) can be constructed similarly to Pm to approximate the
missing behavior of H(x) in [−a, a].

Once the polynomial periodic continuation Cm(ReH) is
available, equation (II.6) can be used to reconstruct ImH .
Since the right hand side of (II.6) is the convolution of − 1

πw
and ReH(w), it can be computed using Fourier transform F
and its inverse F−1 via convolution theorem that gives

ImH(x) = −F−1
[
F
[

1

πx

]
· F [Cm(ReH)(x)]

]
, (III.1)

where F
[

1
πx

]
= i sgn(k), k is the wave number, and we

replaced ReH(w) with its continuation Cm(ReH). Discrete
Fourier transform and its inverse can be computed employing
FFT/IFFT subroutines. We note that the direct application
of these routines to the original non-periodic H(w) (without
periodic continuation) usually causes significant boundary ar-
tifacts since these routines are designed for periodic functions,
and differences in values of H(w) and its derivatives at
endpoints are treated as discontinuities. The reconstruction of
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ImH obtained from (III.1) is then compared to ImH on the
original frequency interval and decision if the data are causal
is made depending if the reconstruction error is smaller than
some tolerance. For more details on the periodic polynomial
continuation based method as well as how to choose the error
threshold, please see [2]. The results of its application are
shown in Section IV.

B. Fourier continuation

As shown in [1], [2], accuracy of a polynomial periodic
continuation primarily depends on smoothness of polynomial
extension including at the boundary of the given domain. With
the fixed order of the continuation polynomial, the sensitivity
of the method to causality violations is limited. Using higher
degree polynomials requires approximation of higher order
derivatives which increases complexity of the problem and
may not be very convenient. To achieve much higher preci-
sion and simplicity, we construct an accurate Fourier series
approximation of H(x) by allowing the Fourier series to be
periodic and causal in an extended domain. We start from the
Fourier continuation of H that we denote by CF (H) and define

CF (H)(x) =

M/2∑
k=−M/2+1

αk e−
2πi
b kx, (III.2)

for even values of M , whereas when M is odd, the index
k varies from −M−12 to M−1

2 . We will take the number of
Fourier coefficients M to be even for simplicity. As before,
b > 1 is the period of approximation.

The functions φk(x) = e−
2πikx
b , k ∈ Z, form a complete

orthogonal basis in L2[0, b] and satisfy φk(x) = φ−k(x).
Since H{e−iax} = i sgn(a) e−iax, one can separate real and
imaginary parts in (III.2) and enforce causality by requiring
Im CF (H) to be Hilbert transform of −Re CF (H). This proce-
dure eliminates Fourier coefficients αk with k ≤ 0. Evaluating
CF (H)(x) at {xj}, j = 1, . . . , N , xj ∈ [−0.5, 0.5], where the
values of H(x) are known, produces a system

CF (H)(xj) =

M/2∑
k=1

αkφk(xj), j = 1, . . . , N, (III.3)

of N linear equations for unknowns αk, k = 1, . . . ,M/2.
Since Fourier coefficients αk are real, system (III.3) can be
solved either as a complex system, or, alternatively, real and
imaginary parts can be separated to produce a real system
and, thus, ensure that a numerical solution {αk} is indeed
real. We find that solving real formulation gives slightly more
accurate results. The number of Fourier coefficients M/2 is
recommended to be as twice as small as the number N of data,
i.e. M = N [4]. This creates an overdetermined linear system
that needs to be solved in the least-squares sense. Because of
high ill-conditioning of the problem that increases with M and
does not depend of the function H itself, we use regularized
Singular Value Decomposition (SVD) method to compute a
minimum norm solution. The singular values below a tolerance
ξ that is close to the machine precision are discarded. We set
ξ = 10−13. The choice of the length b of the extended domain
follows the same guidelines as for the polynomial periodic

continuation. We typically use b = 2. Smaller values of b can
be chosen for functions having steep slopes in the boundary
region. More details about this approach can be found in [3].

In the next section, we demonstrate and compare the perfor-
mance of periodic polynomial and Fourier continuation based
methods to verify causality of the given frequency responses,
modeled by moderately and highly non-smooth functions. We
also study sensitivity of these methods to causality violations.

IV. NUMERICAL EXAMPLES

A. Two-pole Example

Consider a transfer function with two poles defined by

H(w) =
r

iw + p
+

r̄

iw + p̄

with r = 1 + 2i, p = 1 + 3i. The poles of H(w) are
located in the upper half w-plane at ±3 + i, hence, this
function is causal of a sum of two causal transforms. H
is sampled on [0, 10] GHz, values of ReH are reflected to
negative frequencies using the spectrum symmetry. Then the
frequency interval is rescaled to [−0.5, 0.5]. ReH is shown
in the top panel of Fig. 1. Superimposed is its periodic 8th
degree polynomial continuation C8(ReH)(x) with b = 2. In
the bottom panel of Fig. 1 we plot ImH and its reconstruction
−H[C8(ReH)(x)] using the continuation. For comparison, we
also show the result of applying Hilbert transform to ReH
directly without any continuation, which is computed using
Matlab built-in function hilbert. It is clear that agreement
between ImH and −H[C8(ReH)(x)] is much better than
between ImH and −H[ReH(x)], especially in the boundary
region. To analyze the quality of reconstruction of ImH on
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0.5
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Re H
C 8(Re H )

0.5 0 0.5 1 1.5 2 2.5 3 3.5
3

2

1

0

1

2

3

x

 

 

I m H
−H [C 8(Re H ) ]

−H [Re H ]

Fig. 1. Top panel: ReH(x) and its periodic 8th degree polynomial contin-
uation C8(ReH)(x) in Example IV-A with N = 1000, b = 2 shown on
[−0.5, 3.5]. Bottom panel: ImH and its reconstructions −H[C8(ReH)(x)]
and −H[ReH(x)] with and without periodic continuation, respectively.

the original frequency interval (rescaled), we study the error
EC,m defined as

EC,m(x) = ImH +H[Cm(ReH)(x)], x ∈ [−0.5, 0.5].
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For completeness we also introduce the error E of reconstruc-
tion of ImH from ReH without any continuation:

E(x) = ImH +H[ReH(x)], x ∈ [−0.5, 0.5].

The graph of the error EC,8 using 8th degree polynomial
continuation is shown in Fig. 2. For comparison, we plot in

0.5 0 0.5
4

2

0

2

4 x 10 3

x

E
C
,8

Fig. 2. Reconstruction error EC,8(x) in Example IV-A.

Fig. 3 the reconstruction errors EC,m with m = 2, 4, 6, 8
together with the error E when no continuation is used. These
results show that using periodic continuation significantly
reduces the reconstruction error. Moreover, the higher degree
of the polynomial Pm(x) is, i.e., the smoother continuation
is, the smaller reconstruction error is. With m = 8, this error
is decreased by about 15 times compared to the error when
no continuation is used. Using higher degree polynomials will
decrease the error even more as error analysis in [2] indicates.
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x

E
C
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,
E

 

 

m = 2
m = 4
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m = 8
no contn

Fig. 3. Errors EC,m in reconstruction of ImH in Example IV-A using
continuation Cm(ReH(x)) with polynomials of degree m = 2, 4, 6, 8 and
b = 2, and E from the direct computation of Hilbert transform (without
continuation) using Matlab function hilbert.

Now we apply the Fourier continuation based method to
the same example using the same number of sample points
N = 1000 and b = 2. We use M = N . The errors

ER(x) = ReH(x)− Re CF (H)(x),

EI(x) = ImH(x)− Im CF (H)(x)

in reconstruction of ReH and ImH , respectively, using either
complex or real formulation (see [3] for more details) of
system (III.3) are shown in Fig. 4. Results indicate that using
Fourier continuation approach allows one to get extremely
small reconstruction error for a causal function. With M =
1000, the errors are on the order of 10−10, while with M =
1500 the error reduces to 10−14, which is close to the machine
precision. Moreover, it is clearly seen that the reconstruction

0.5 0 0.5
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2

0

2

4 x 10 10

x

E
R

 

 

ReC C(H )

ReC R(H )

0.5 0 0.5
3

2

1

0

1

2

3 x 10 10

x

E
I

 

 

I mC C(H )

I mC R(H )

Fig. 4. Logarithmic plot of reconstruction errors ER(x) and EI(x) in
example IV-A on [−0.5, 0.5] with M = N = 1000, b = 2 using Fourier
continuation based method. Superscripts C and R correspond to solving
system (III.3) in complex and real formulation.

error is uniform on the entire interval [−0.5, 0.5] as opposed
to the error obtained using polynomial continuation based
approach [2] or generalized dispersion relations [11], that was
greater in the boundary region.

We also tested both periodic continuation based methods
to detect causality violations. This is done by imposing a
localised artificial causality violation modeled by Gaussian
a exp

(
− (x−x0)

2

2σ2

)
of small amplitude a, standard deviation

σ, centered at x0 and added to ReH , while keeping ImH
unchanged. We find that polynomial periodic continuation
method allows one to detect causality violations of amplitude
up to 10−3, while Fourier spectral continuation approach is
much more sensitive to such violations and perturbations of
size up to 10−13 can be detected successfully by observing
very pronounced spikes in the reconstruction errors ER(x)
and EI(x) [3].

B. Highly Non-smooth Example

Next we analyze the performance of the periodic con-
tinuation based method applied to a non-smooth frequency
response function H(w) that was artificially created in [5]
to test the performance of the Vector Fitting algorithm. The
transfer function H is given in the Laplace domain as a rational
function of order 18 in the pole-residue form

H(s) =

18∑
n=1

cn
s− an

,

where cn are residues, an poles with 2 poles being real and
the rest being in complex conjugate pairs located in the left
half plane. The values of poles and residues can be found in
[5]. Since all poles are in the left half plane, the system that
function H(s) represents is passive, hence it is automatically
causal [12]. To convert H to frequency domain, we use
substitution s = e−i

π
2 w = −iw, which is rotation of w-plane
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by π/2 in the clockwise direction, so that poles of H(s) in
the left half s-plane correspond to poles of H(w) in the lower
w-plane.

In Fig. 5 we show ReH(x), its periodic 8th degree poly-
nomial continuation C8(ReH)(x) as well as reconstructions
of ImH with and without continuations. The error EC,8(x)
does not exceed the value of 2 and it is about twice smaller
than the error E without a continuation. Since the values of
H(x) are quite large in this example, the relative error is only
0.7%. The Fourier continuation approach does not work well
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0

100
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−H [C 8(Re H ) ]

−H [Re H ]

Fig. 5. Top panel: ReH(x) and its periodic 8th degree polynomial contin-
uation C8(ReH)(x) in Example IV-B with N = 1000, b = 2 shown on
[−0.5, 3.5]. Bottom panel: ImH and its reconstructions −H[C8(ReH)(x)]
and −H[ReH(x)] with and without periodic continuation, respectively.

in this example. The Fourier approximations for both ReH
and ImH have very pronounced Gibbs like oscillations due to
the presence of discontinuities in H . By increasing the number
of Fourier coefficients M/2 with the fixed resolution N , it is
possible to construct an approximation that will be very close
to H at the given frequency points but this approximation
becomes insensitive to causality violations. This is a reason for
which the number of Fourier coefficients cannot be arbitrary
and needs to be related to the given resolution, i.e. M = N .

For more examples of test transfer functions including
simulated frequency responses as well as non-causal transfer
functions, please see [2], [3].

V. Conclusions
We present two numerical methods based on construction

of periodic continuations that allow one to verify and enforce
if necessary the causality of tabulated frequency responses.
The first method uses polynomial periodic continuation, while
the second calculates accurate Fourier series approximations
of transfer functions, not periodic in general. Both approaches
require continuations to be periodic in an extended domain of
finite length. For periodic continuation based method, starting
from the real part of the transfer function and computing
its continuation, the corresponding imaginary part is recon-
structed by causality using the Kramers-Krönig dispersion
relations that require real and imaginary parts of the transfer

function to be a Hilbert transform pair. This is done by using
FFT/IFFT routines. For Fourier continuation based method,
the causality is imposed directly on Fourier coefficients that
are computed in the least squares sense using truncated SVD
method and without FFT/IFFT. Both approaches eliminate
the necessity of approximating the behavior of the transfer
function at infinity. The polynomial continuation based method
allows one to significantly reduce boundary artifacts that are
due to the lack of out-of band frequency responses, while
Fourier continuation approach is able to completely remove
them and produces uniform small errors close to the machine
precision. The latter method is also more sensitive to causality
violations. For highly non-smooth transfer functions, polyno-
mial continuation based method handles better discontinuities,
while Fourier continuation based approach suffers from Gibbs
like oscillations. The methods are applicable to both baseband
and bandpass regimes.

VI. Acknowledgments
This work was funded by the Micron Foundation.

REFERENCES

[1] ABOUTALEB, H. A., BARANNYK, L. L., ELSHABINI, A., AND BAR-
LOW, F. Causality enforcement of DRAM package models using discrete
Hilbert transforms. In 2013 IEEE Workshop on Microelectronics and
Electron Devices, WMED 2013 (2013), pp. 21–24.

[2] BARANNYK, L. L., ABOUTALEB, H. A., ELSHABINI, A., AND BAR-
LOW, F. Causality verification using polynomial periodic continuations.
J. Microelectron. Electron. Packag. (accept.).

[3] BARANNYK, L. L., ABOUTALEB, H. A., ELSHABINI, A., AND BAR-
LOW, F. Spectrally accurate causality enforcement using SVD-based
Fourier continuations. IEEE Trans. Comp. Packag. Manuf. Techn.
(subm.).

[4] BOYD, J. P. A comparison of numerical algorithms for Fourier extension
of the first, second, and third kinds. J. Comput. Phys. 178, 1 (2002),
118–160.

[5] GUSTAVSEN, B., AND SEMLYEN, A. Rational approximation of fre-
quency domain responses by vector fitting. IEEE Trans. Trans. Power
Delivery 14, 3 (1999), 1052–1061.

[6] KNOCKAERT, L., AND DHAENE, T. Causality determination and time
delay extraction by means of the eigenfunctions of the Hilbert transform.
In 2008 IEEE Workshop on Signal Propagation on Interconnects (2008),
pp. 19–22.

[7] NUSSENZVEIG, H. M. Causality and Dispersion Relations. Academic
Press, 1972.

[8] SWAMINATHAN, M., AND ENGIN, E. Power Integrity Modeling and
Design for Semiconductors and Systems. Prentice Hall, 2007.

[9] TESCHE, F. M. On the use of the Hilbert transform for processing
measured CW data. IEEE Trans. Electromagn. Compat. 34, 3, 1 (1992),
259–266.

[10] TRIVERIO, P., AND GRIVET-TALOCIA, S. A robust causality verifi-
cation tool for tabulated frequency data. In 10th IEEE Workshop On
Signal Propagation On Interconnects, Proceedings (2006), pp. 65–68.
10th IEEE Workshop on Signal Propagation on Interconnects, Berlin,
Germany, May 09–12, 2006.

[11] TRIVERIO, P., AND GRIVET-TALOCIA, S. Robust causality character-
ization via generalized dispersion relations. IEEE Trans. Adv. Packag.
31, 3 (2008), 579–593.

[12] TRIVERIO, P., GRIVET-TALOCIA, S., NAKHLA, M. S., CANAVERO,
F. G., AND ACHAR, R. Stability, causality, and passivity in electrical
interconnect models. IEEE Trans. Adv. Packag. 30, 4 (2007), 795–808.

[13] XU, B. S., ZENG, X. Y., HE, J., AND HAN, D.-H. Checking causality
of interconnects through minimum-phase and all-pass decomposition. In
2006 Conference on High Density Microsystem Design and Packaging
and Component Failure Analysis (HDP ‘06) (2006), pp. 271–273.

[14] YOUNG, B. Bandwidth and density reduction of tabulated data using
causality checking. In 2010 IEEE Electrical Design of Advanced
Packaging and Systems Symposium (EDAPS 2010) (2010), pp. 1–4.


