
ABSTRACT

FULLY NONLINEAR INTERFACIAL WAVES IN A
BOUNDED TWO-FLUID SYSTEM

by
Lyudmyla Leonidivna Barannyk

We study the nonlinear flow which results when two immiscible inviscid incompressible

fluids of different densities and separated by an interface which is free to move and

which supports surface tension, are caused to flow in a straight infinite channel.

Gravity is taken into consideration and the velocities of each phase can be different,

thus giving rise to the Kelvin-Helmholtz instability. Our objective is to study

the competing effects of the Kelvin-Helmholtz instability coupled with a stably or

unstably stratified fluid system (Rayleigh-Taylor instability) when surface tension is

present to regularize the dynamics. Our approach involves the derivation of two-

and three-dimensional model evolution equations using long-wave asymptotics and

the ensuing analysis and computation of these models. In addition, we derive the

appropriate Birkhoff-Rott integro-differential equation for two-phase inviscid flows in

channels of arbitrary aspect ratios.

A long wave asymptotic analysis is undertaken to develop a theory for fully

nonlinear interfacial waves allowing amplitudes as large as the channel thickness. The

result is a set of evolution equations for the interfacial shape and the velocity jump

across the interface. Linear stability analysis reveals that capillary forces stabilize

short-wave disturbances in a dispersive manner and we study their effect on the

fully nonlinear dynamics described by our models. In the case of two-dimensional

interfacial deflections, traveling waves of permanent form are constructed and it is

shown that solitary waves are possible for a range of physical parameters. All solitary

waves are expressed implicitly in terms of incomplete elliptic integrals of the third

kind. When the upper layer has zero density, two explicit solitary-wave solutions



have been found whose amplitudes are equal to h/4 or h/9 where 2h is the channel

thickness. In the absence of gravity, solitary waves are not possible but periodic ones

are. Numerically constructed traveling and solitary waves are given for representative

physical parameters. The initial value problem for the partial differential equations is

also addressed numerically in periodic domains, and the regularizing effect of surface

tension is investigated. In particular, when surface tension is absent it is shown

that the system of governing evolution equations terminates in a singularity after a

finite time. This is achieved by studying a 2 × 2 system of nonlinear conservation

laws in the complex plane and by numerical solution of the evolution equations.

The analysis shows that a sinusoidal perturbation of the flat interface and a cosine

perturbation to the unit velocity jump across the interface, develop a singularity at

time tc = ln 1
ε
+O

(
ln(ln 1

ε
)
)

where ε is the initial amplitude of the disturbances. This

result is asymptotic for small ε and is derived by studying the asymptotic form of the

flow characteristics in the complex plane.

We also derive the analogous three-dimensional evolution equations by assuming

that the wavelengths in the principal horizontal directions are large compared to the

channel thickness. Surface tension is again incorporated to regularize short-wave

Kelvin-Helmholtz instabilities and the equations are solved numerically subject to

periodic boundary conditions. Evidence of singularity formation is found. In

particular, we observe that singularities occur at isolated points starting from general

initial conditions. This finding is consistent with numerical studies of unbounded

three-dimensional vortex sheets (see Introduction for a discussion and references).

In the final part of this work we consider the vortex-sheet formulation of the

exact nonlinear two-dimensional flow of a vortex sheet which is bounded in a channel.

We derive a Birkhoff-Rott type integro-differential evolution equation for the velocity

of the interface in terms of the vorticity as well as the evolution equation for the

unnormalized vortex sheet strength. For the case of a spatially periodic vortex



sheet, this Birkhoff-Rott type equation is written in terms of Jacobi’s functions. The

equation is shown to recover the limits of unbounded and non-periodic flows which

are known in the literature.
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CHAPTER 1

INTRODUCTION

Interfacial waves are waves which propagate at the interface of two fluids and are

encountered in many physical situations. Applications range from oceanography,

meteorology, cooling systems, lubricated transport, as well as applications in

aerodynamics, for example, wakes behind aerofoils or flows in turbomachinery. Waves

propagating in two-layer fluid flows may be observed in the seasonal thermocline in

the ocean and in the inversion in the atmosphere. An example of environmental

interest are flows in estuaries where lighter fresh water flows into the heavier brine

with the potential of interfacial instabilities developing which can affect mixing, for

example. The fundamental understanding of interfacial waves and their nonlinear

response is of great interest both from a mathematical point of view as well as in

gaining a quantitative understanding of fundamental physical mechanisms.

It is well known that nonlinearity and dispersion are two fundamental

mechanisms that are responsible for wave propagation in fluids. During the course of

the wave evolution, nonlinearity tends to steepen a wave form, while dispersion tends

to flatten steep free-surface gradients; thus it creates a competing mechanism to

that of nonlinearity. Possibly one of the simplest examples that exhibits the interplay

between nonlinearity and dispersion is the case of free-surface waves of a homogeneous

layer of incompressible and inviscid fluid. Free surface waves are waves propagating at

the interface of a fluid with a passive upper region, i.e. the density of the upper layer

being zero. When the two competing effects of nonlinearity and dispersion balance

each other, this can result in a single wave of elevation, called a solitary wave, which

propagates at a constant amplitude-dependent speed, without change in shape. The

relative importance of nonlinearity and dispersion can be measured if we introduce

two independent non-dimensional parameters: the nonlinearity ratio a = a
h1

where a

1



2

in the wave amplitude and h1 is the thickness of the fluid layer, and the aspect ratio

ε = h1

l
, ratio of the layer thickness to the typical wavelength l. The balance when a

solitary wave arises is usually taken to be a scaling relation between a and ε for values

a ¿ 1 and ε ¿ 1. The regime a ¿ 1 and ε ¿ 1 is called a weakly nonlinear regime

since in this case, the amplitude of the wave is much smaller than the thickness of

the layer.

Nonlinear waves propagating on the surface of fluid of finite or infinite depth

have been studied extensively. Gravity waves were studied by Stokes [85], Schwartz

[80] and Longuet-Higgings [59] and exact solutions for capillary waves were found

by Crapper [26] for the case of fluid of infinite depth and Kinnersley [50] for fluid of

finite depth. Gravity-capillary waves in irrotational fluid were considered by Schwartz

and Vanden-Broeck [81], Chen and Saffman [20, 21], Hogan [39] and Hunter and

Vanden-Broeck [43]. When vorticity is also present, calculations for gravity-capillary

waves can be found in Kang and Vanden-Broeck [48] and references therein.

Of course, most physical processes (particularly those with environmental

applications) occur when the density of the fluid does not remain constant throughout

the layer, but has some variation with the height of the layer. Although most of the

density stratifications which take place in nature are continuous, it is reasonable to

use the two-layer fluid model with a density discontinuity, due to its simplicity and the

fact that it gives a good approximation when the interfacial wavelength is sufficiently

longer than the length scale of the density variation [87]. The case of waves at the

interface of two immiscible fluids of different density brings an additional level of

complexity into the wave propagation problem. To see this, let h2 be the thickness of

the lower layer. Then in addition to a and ε, one can introduce another independent

parameter, the depth ratio D = h1

h2
. The balance between nonlinearity and dispersion

can vary according to D even in the weakly nonlinear case. Different regimes are

possible depending on the depth ratio. They range between the two extremes, one
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of which is when the lower fluid layer is also small compared to the wavelength, and

when the lower fluid layer is infinitely deep compared with the upper one.

The shallow water wave regime is characterized by D = O(1) and a = O(ε2),

ε ¿ 1. These assumptions lead to the Korteweg-de Vries equation that governs the

evolution of the unidirectional weakly nonlinear waves - see Benjamin [10]). Miles

[64, 65], Kakutani and Yamasaki [47], Helfrich, Melville and Miles [37] study the

internal waves at the interface of two fluids with applications to oceanography. The

central interest of the above investigators is the weakly nonlinear evolution of traveling

waves over varying topography. Surface tension is usually excluded and the evolution

equations are of Korteweg-de Vries type. Rosales and Papanicolaou [76] derived

fairly general Korteweg-de Vries evolution equations for gravity waves in a channel

with a rough bottom, the roughness being both rapidly varying periodic and (small

amplitude) random.

Another case is when the depth of the lower layer is much larger than that of

the upper layer (D À 1) and a = O(ε). This limit leads to the Intermediate Long

Wave equation studied by Joseph [46] and Kubota, Ko & Dobbs [54]. In the limit as

D →∞, this equation reduces to the Benjamin-Ono equation (Benjamin [11], Davis

& Acrivos [29], Ono [70]). Matsuno [62] and Choi & Camassa [22] derived more

general equations valid for arbitrary D using the weakly nonlinear assumption.

Gravity waves in the case of two fluids have been modelled by Liska, Margolin

and Wendroff [57], and Choi and Camassa [23] among others. In particular, the

latter study contains the Kortweg-de Vries and Intermediate Long Wave equations

as special cases. The effect of a Kelvin-Helmholtz instability when a second fluid is

introduced, is likely to render these results unstable to short waves, and such effects

were excluded from the above studies.

The common feature of the models briefly described above, is the presence

of small parameters like a and ε that allow us to eliminate the dependence on
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the vertical coordinate, thereby substantially simplifying the problem and making

analytical progress possible. For these approximations to the original Euler equations

to be practically useful, however, they have to be accurate even when the parameters

a and ε, for example, take moderate values rather than the asymptotically small

ones assumed in the derivations, since this can ensure some compensation for other

neglected physical effects like viscosity, for instance. Experiments conducted by Koop

& Butler [51], however, reveal that just when these weakly nonlinear models give a

good approximation to the Euler equations, the effects of viscosity become important

and compete with nonlinearity and dispersion, thus possibly making these models of

limited validity. Experimental data collected by these authors provide evidence that

the weak nonlinearity (small amplitude) assumption may be inadequate to describe

their experiments, at least.

Despite their physical relevance, the effects of finite amplitude have been

investigated significantly less than weakly nonlinear models. The challenge is to

have fully nonlinear models comparable in simplicity to weakly nonlinear ones and at

the same time have the potential to capture and describe accurately finite-amplitude

dynamical effects. One of our motivations in this study, is to derive asymptotically

fully nonlinear models that contain several competing physical effects (nonlinearity,

shear instability, density stratification and surface tension). Ultimately, we study

these models analytically and computationally in order to gain a quantitative

understanding of such flows.

Another interesting problem that arises in the study of an interface between two

fluids of different density is the problem of nonlinear stability. When the heavier fluid

lies above the lighter one, the interface may be subject to Rayleigh-Taylor instability

due to the destabilizing force of gravity (Taylor [88]). This results in the characteristic

“spike-bubble”interfacial shape pattern as the interface amplitude grows with time.

For this reason, this kind of instability is sometimes called the fingering instability.
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Taylor recognized that all such types of problem are equivalent to those where the net

acceleration is directed from the lighter fluid towards the heavier one. This instability

can be observed by rapidly accelerating a glass of water downwards, for example. Let

us denote the density in the upper layer by ρ1 and density in the lower one by ρ2

(we are assuming that a given continuous density distribution can be replaced by a

piecewise smooth distribution - see discussion above). We also introduce the density

ratio ρ = ρ1

ρ2
and the Atwood ratio α = 1−ρ

1+ρ
. The Rayleigh-Taylor mode has α < 0

since the heavier fluid lies above the lighter one, then. When the lighter fluid is

above the heavier one, i.e., α > 0, the configuration is statically stable, but once

there is a difference in velocities across the interface, i.e., the tangential velocity

has a jump discontinuity, an inertially induced Kelvin-Helmholtz instability can be

generated (Kelvin [49]) giving another classical example of hydrodynamic instability.

The Kelvin-Helmholtz instability is a fundamental instability of incompressible fluid

flow at high Reynolds number. A vortex sheet separating the regions of potential

flow has been often used as an idealization of a shear layered flow in studies of mixing

properties, boundary layers and coherent structures in fluids. In the case when surface

tension is absent and the two fluids are both incompressible and inviscid, the linear

stability analysis for both of these instability modes, predicts that as the wavelength

decreases, the growth rate of disturbances increases without any bound. In this

case, the vortex sheet problem is ill-posed. Moreover, nonlinear interaction of high

frequency modes can lead to the formation of a singularity in a finite time.

In real fluids, interfacial surface tension and viscosity regularize this behavior.

Chandrasekhar [19] deduced that for the inviscid Kelvin-Helmholtz mode, the surface

tension acts to inhibit the onset of linearized instability at all wavelengths for a value

of the velocity difference not exceeding a certain critical value. Greater velocity

differences are unstable but only for wavelengths above a certain minimum value that

depends on the velocity difference as well as fluid properties.
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There is a fair number of experiments which address the Kelvin-Helmholtz

instability in a bounded two fluid system in a channel. Among them are experiments

by Thorpe [89, 89], and a photograph from [89] is also contained in “An Album of

Fluid Motion” by Van Dyke [91], photo 145, p. 85. This experiment on stratified

shear flow is presented in Figure 1.1 reveals that an initial sinusoidal perturbation

of the interface occurs after a few seconds and grows nonlinearly into regular spiral

rolls. The phenomenon of roll-up is highly nonlinear and is related to several aspects

of the vortex sheet problem as we discuss later.

Figure 1.1 Kelvin-Helmholtz instability of stratified shear flow. Taken from Van
Dyke’s album [91], photo 145, p. 85.

Another photo from the experiment on the Kelvin-Helmholtz instability of

superposed streams by Roberts, Dimotakis & Roshko (presented in Van Dyke’s album

[91], photo 146, p. 85) is shown in Figure 1.2. In both photos, the upper layer moves

faster then the lower one. In the left photograph (Figure 1.2 (a)), the faster stream

is perturbed sinusoidally at the most unstable frequency, and at half that frequency

in the right (Figure 1.2 (b)). The motion the latter case produces an evolution which

locks into the subharmonic mode.

The study of interfacial stability problems beyond the range of linear theory,

as well as nonlinear free-surface wave behavior required the development of various

numerical methods. The time-dependent Navier-Stokes equations were numerically

integrated by Harlow & Welch [36], Daly [27, 28], Hirt, Cook & Butler [38] in their

analysis of Rayleigh-Taylor instability. Daly [28] also investigated the effect of surface
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Figure 1.2 Kelvin-Helmholtz instability of superposed streams. Taken from Van
Dyke’s album [91], photo 146, p. 85. (a) Perturbation at most unstable mode; (b) at
half that frequency.

tension on the late-time formation of a heavy-fluid spike for cylindrical geometry. In

the case when the two fluids may be assumed to be irrotational, Kelvin’s Circulation

Theorem guarantees that the vorticity will be confined to the interface for all times.

Hence, the interface may be regarded as a generalized vortex sheet. (The classical

vortex sheet model is used for the two-fluid flow of different velocities but the same

constant density. The generalized vortex sheet means that in addition to different

velocities, fluids also have different densities in each layer, i.e. there is a finite density

discontinuity across the interface.) Using the above result, Birkhoff [12] formulated

the two-dimensional inviscid interfacial motion in terms of variables that describe the

shape and circulation distribution of a vortex sheet representing the interface. This

approach allowed him to reduce the effective space dimensionality of the problem by

one. Birkhoff argued that the nonlinear initial value problem is ill-posed without the

smoothing effect of surface tension and/or viscosity because of the unbounded growth

rate at decreasing wavelength in the linear stability analysis. Since the presence of

the surface tension removes its ill-posedness in the linear theory, Birkhoff suggested

that it may likewise do so in the nonlinear case.

For constant-density fluid motions modeling shear-layers, surface tension cannot

be included on physical grounds but it may be used as an artificial smoothing method,

i.e., as a regularization method. Rosenhead [77] was the first who studied this

problem numerically by modeling the vortex sheet by a row of point vortices whose

mutually self-induced motion was supposed to approximate the true vortex-sheet

motion. Unfortunately, Rosenhead found the vortices exhibited chaotic behavior in
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regions where smooth roll-up should be expected. Moore [68] examined in detail

the special case of a uniform circular vortex sheet. Combining a spectral analysis of

the growing numerical error and an analytical study of the discrete-model behavior,

Moore concluded that the mechanism of chaotic motion is indeed a discrete form of

Kelvin-Helmholtz instability. Fink & Soh [31] proposed a method of redistributing the

vortices at each time step that eliminated the error. Longuet-Higgins & Cokelet [60]

used a linear-smoothing technique to suppress a saw-tooth-like instability in related

free-surface flows. These methods were effective means of inhibiting the growth of

the error.

Generalized vortex-sheet-like formulations of interfacial motion for the case

of a finite-density discontinuity, have been developed by several authors. Among

them is the paper by Zaroodny & Greenberg [93] where the authors studied the

free-surface wave without inclusion of the surface tension term. Zalosh [92] includes

surface tension in a vortex-type treatment of interfacial motion. He uses the simple

point-vortex model to study Kelvin-Helmholtz instability and finds that for unstable

conditions, irregularities develop on the interface profile where some coherent roll-up

is expected.

The boundary integral technique is another powerful method for studying the

evolution of an interface between incompressible fluids. In the case of inviscid

fluids, methods based on the representation of the interface by a dipole or vortex

sheet strength have been used to study Rayleigh-Taylor instability (Baker, Meiron

& Orszag [4], Pullin [73], Tryggvason [90]), the motion of water waves and internal

waves (Baker, Meiron & Orszag [6], Beale, Hou & Lowengrub [9, 8], [41], Pullin [73],

Rangel & Sirignano [74], Roberts [75], Baker & Nachbin [5]). Although there are

some differences in these methods, they all use markers to represent the interface,

and simple approximations to the boundary integrals that are used to determine the
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velocity of the markers. Bernoulli’s equation, or some version of it, is used to update

the velocity potential, dipole strength or the vortex sheet along the interface.

For flows when the upper fluid is absent (i.e., the case of an upper liquid

with zero density), numerical simulations reveal evidence that the motion is well

behaved (Baker, Caflisch & Siegel [3]). However, when the motion of an interface is

studied numerically for fluids of nonzero densities, the rapid formation of curvature

singularities is observed in the absence of surface tension. The underlying mechanism

that causes such singularities to form is the Kelvin-Helmholtz instability (Krasny

[53], Shelley [82], Baker, Caflisch & Siegel [3]). As the interface moves, there will be

regions where speeds of liquid flow are different on either side of the interface. At

a local level these regions are vortex sheets with almost uniform strength. In the

absence of stabilizing effects like surface tension or viscosity, these regions develop

the nonlinear Kelvin-Helmholtz instability which causes the formation of curvature

singularities in finite time.

The singularity formation in two-dimensional vortex sheets has been the subject

of intensive study in the last two decades. Early contributions are due to Moore [67]

who studied the nonlinear evolution of a vortex sheet with a small initial sinusoidal

disturbance of amplitude ε. Moore predicted that near the singularity, the curvature

of the vortex sheet is proportianal to |Γ−Γs|−1/2, where Γ is the circulation of the sheet

measured from a fixed reference point to point s and Γs is the position of singularity.

Moore’s result was based on asymptotic analysis and was confirmed by Meiron, Baker

& Orszag [63] who investigated a power series solution in time. Later this result was

supported numerically by Krasny [53] and Shelley [82]. Validating rigorously Moore’s

analysis, Caflisch & Orellana [15] proved the existence for a slightly perturbed vortex

sheet up to t = O(| ln ε|) for Moore’s initial condition. More recently, Cowley, Baker

& Tanveer [25] studied in detail the singularity formation on a two-dimensional vortex

sheet problem. They showed how the 3
2

singularity in the vortex sheet is selected at
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an early time in the extended complex plane. Authors also obtained an asymptotic

description of the sheet shape as the physical singularity forms.

Most studies of two-dimensional vortex sheet problems are performed using

a complex variable formulation. However, such formulations cannot naturally be

generalized to the three-dimensional case. Ishihara & Kaneda [44, 45] provided

some evidence that singularities form on three-dimensional vortex sheets by directly

generalizing Moore’s analysis to the three-dimensional problem. However, their result

does not give a clear description of the singularity structure. Brady & Pullin [13]

investigated three-dimensional vortex sheets of cylindrical shape and normal mode

initial conditions. They showed that for this special type of initial data, the problem

can be reduced exactly to a two-dimensional vortex sheet problem. Recently, Hou and

Hu [40] have resolved a long-outstanding open problem on the singularity formation

induced by the three-dimensional Kelvin-Helmholtz instability. They found that

when viewed in appropriate physical variables and coordinates, the three-dimensional

problem is essentially the same as the corresponding two-dimensional problem. These

authors investigated an interesting open question about whether the singularity

in a three-dimensional vortex sheet first appears as isolated points or along a

one-dimensional line segment. They studied the motion of a singularity in the

extended complex plane and used analytic continuation to argue that at the time

when physical singularities form, they appear either at some isolated points or along

entire one-dimensional curves in the plane of real parameters. They showed that the

interface cannot develop finite time singularities along a segment of a one-dimensional

curve.

The purpose of the present work is to derive two-fluid models when surface

tension and gravity are present, and at the same time allowing tangential slip at the

interface making it a vortex sheet. The surface tension is a physical regularization

of the system and we are concerned, among other aspects, with the construction of
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solitary waves for a range of parameters. These solutions along with finite-length

waves add gravity and an upper fluid to the study of Kinnersley [50]. No exact

solutions are possible in general when gravity is present, but our fully nonlinear

long wave model supports a class of solitary waves expressible in terms of elliptic

integrals. Some explicit solutions are also found. We are also interested in evaluating

our models for singularity formation in the absence of surface tension and presence of a

Kelvin-Helmholtz instability, along with the analogous surface tension regularizations

of such motions by increasingly larger amounts of regularization. We pursue such

studies using numerical methods for both two- and three-dimensional disturbances.

In addition, we derive Birkhoff-Rott type equations for vortex sheets in channels.

Such models can be used to make theoretical comparisons with available experiments

but this is left for future work.

The rest of the thesis is organized as follows. In Chapter 2, we use a long

wave approximation to develop a theory for fully nonlinear interfacial waves allowing

amplitudes as large as the channel thickness. The result is a set of evolution

equations for the interfacial shape and the velocity jump across the interface. Linear

stability analysis reveals that capillary forces stabilize short-wave disturbances in

a dispersive manner. Traveling waves of permanent form are studied, and it is

shown that solitary waves are possible for a range of physical parameters. All

solitary waves can be expressed implicitly in terms of incomplete elliptic integrals

of the third kind. When the upper layer has zero density, two explicit solitary-wave

solutions have been found whose amplitudes are equal to h/4 or h/9 where 2h is

the channel thickness. In the absence of gravity, solitary waves are not possible

but periodic ones are. Numerically constructed traveling and solitary waves are

given for representative physical parameters. The initial value problem for the

partial differential equations is also addressed numerically, and the regularizing effect

of surface tension is investigated. An explicit pseudo-spectral scheme is used in
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numerical analysis. The system of evolution equations has three conserved quantities,

corresponding to mass, total circulation and energy. These constants of motion have

been used as a check on the accuracy of computational solutions. It is also shown

that the system of governing equations terminates in infinite slope singularities. This

is achieved by studying a 2× 2 system of nonlinear conservation laws in the complex

plane and by numerical solution of the evolution equations. This analysis shows that a

sinusoidal perturbation of the flat interface and a cosinusoidal perturbation to the unit

velocity jump across the interface develop a singularity at time tc = ln 1
ε
+O(ln(ln 1

ε
))

where ε is the initial amplitude of the disturbances. This result is asymptotic for

small ε and is derived by studying the asymptotic form of the flow characteristics in

the complex plane.

In Chapter 3, the problem under consideration is generalized to the three-

dimensional case, where two fluids with different density and velocities bounded

between two infinite horizontal plates are studied. Three-dimensional long-wave

model equations are derived by assuming that the wavelengths in the principal

horizontal directions are large compared to the channel thickness. Surface tension

is again incorporated to regularize short-wave Kelvin-Helmholtz instabilities and the

equations are solved numerically subject to periodic boundary conditions. Evidence

of singularity formation is found. In particular, we observe that singularities occur

at isolated points starting from general initial conditions. This finding is consistent

with numerical studies of unbounded three-dimensional vortex sheets, in particular,

with the results by Hou & Hu [40]. Integral invariants of motion that correspond to

mass, total circulation in the principal horizontal directions, and energy provided a

useful accuracy check for the numerics.

Chapter 4 presents the vortex-sheet formulation of the exact nonlinear two-

dimensional motion of the interface for the case when the vortex sheet is bounded

by the channel walls. The model includes a Birkhoff-Rott type integro-differential
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evolution equation for the velocity of the interface in terms of the vorticity as well as

the evolution equation for the unnormalized vortex sheet strength. For the case of a

spacially periodic vortex sheet, this Birkhoff-Rott type equation is written in terms

of Jacobi’s functions. The equation is shown to recover the limits of unbounded and

non-periodic flows which are known in the literature. Appendix A gives the details

of the problem formulation in the three-dimensional case that are used as well for

the two-dimensional problem as a partial case. In Appendix B, we derive equation

(2.58) that governs the evolution of nonlinear traveling waves. Appendix C contains

necessary definitions, relations and properties of Legendre’s Elliptic Integrals, Jacobi’s

Elliptic Functions and Jacobi’s Z, Π, Θ and H Functions. Finally, in Appendix D,

we present Sohotskij-Plemelj Formulae used in the derivation of a Birkhoff-Rott type

integro-differential equation in Section 4.1.



CHAPTER 2

TWO-DIMENSIONAL NONLINEAR WAVES

2.1 Problem Formulation

We consider a system of two immiscible fluid streams each with a different constant

density and different velocity, one stream above the other. The fluids are assumed

to be inviscid, incompressible, and the motion irrotational. The fluids are of infinite

horizontal extent and they are bounded in a channel with straight, horizontal parallel

walls. We are interested in the evolution of interfacial waves when both gravity and

surface tension act. The unperturbed depth of each layer is initially h. Denote upper

and lower fluid quantities by subscripts 1 and 2, respectively, with corresponding

densities ρ1 and ρ2. Using Cartesian coordinates, the undisturbed interface is at

y = 0 and at subsequent times it is given by y = S(x, t), where x is the horizontal

coordinate and t is time. Throughout the thesis, both top and the bottom boundaries

are assumed to be rigid, so that problems such as the interaction between surface

waves and interfacial waves do not arise. The configuration is schematically shown in

Figure 2.1.

Figure 2.1 The configuration of the problem.

The flow is taken to be irrotational away from the interface (in what follows

we allow the interface to be a vortex sheet). Under these assumptions, the motion of

14
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the upper fluid can be expressed in terms of the velocity potential φ1(x, y, t), and the

lower in terms of φ2(x, y, t). These potentials are governed by the Laplace equations

φixx + φiyy = 0 in Ωi, (2.1)

subject to the following boundary conditions

φiy = 0 at y = ±h, (2.2)

St + φixSx = φiy on y = S, (2.3)

ρ2φ2t +
1

2
ρ2

[
(φ2x)

2 + (φ2y)
2
]
+ (ρ2 − ρ1)gS

− ρ1φ1t −
1

2
ρ1

[
(φ1x)

2 + (φ1y)
2
]

= p1 − p2 on y = S, (2.4)

where i = 1, 2; the subscripts x, y, and t mean partial differentiations with respect to

x, y, and t, respectively. The boundary conditions (2.2)-(2.4) represent zero normal

flow (impermeability) at solid walls, the kinematic constraint, and the Bernoulli

equation at the interface derivable by starting from the Euler equations and using the

velocity potentials φi, i = 1, 2. These conditions are derived from the Navier-Stokes

model in Appendix A. The pressure difference across the interface is due to surface

tension and is directly proportional to the curvature of S. Note that if the flow is

undisturbed far away, and there is an underlying horizontal velocity V ±(t) in each

layer, then an appropriate function of t must be added to (2.4). This is removed when

(2.4) is differentiated with respect to x; the underlying flow is important, however,

because it provides linear instability through the Kelvin-Helmholtz mechanism, and

ill-posedness of the nonlinear problem, at least in the absence of surface tension.

The pressure difference across the interface balances surface tension forces by

the normal stress condition, giving the pressure jump

p1 − p2 = σ0
Sxx

(1 + ε2S2
x)

3
2

, (2.5)
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where σ0 is the surface tension coefficient.

Assuming l to be a typical horizontal length scale (e.g., a wavelength), and c0

to be a typical velocity (e.g., a wavespeed given by linear theory if the waves are

dispersive, or a typical underlying velocity in the case of Kelvin-Helmholtz flow), the

problem is made dimensionless by introducing the following variables (superscripts

* denote dimensionless quantities and are subsequently dropped from the resulting

equations):

x∗ =
x

l
, y∗ =

y

h
, t∗ =

c0

2l
t, S∗ =

S

h
, φ∗i =

φi

c0l
, p∗i =

2

ρ2c2
0

pi. (2.6)

The coefficient 1
2

in the scaling for time t∗ is introduced to remove coefficient 1
2

in the

Bernoulli equation (2.4). The dimensionless system to be addressed becomes

ε2φixx + φiyy = 0 in Ωi, (2.7)

φiy = 0 on y = ±1, (2.8)

ε2
(

1

2
St + φixSx

)
= φiy on y = S, (2.9)

φ2t +
[
(φ2x)

2 +
1

ε2

(
φ2y

)2
]

+
1

F
(1− ρ)S

− ρφ1t − ρ
[
(φ1x)

2 +
1

ε2

(
φ1y

)2
]

= σ̃ε
Sxx

(1 + ε2S2
x)

3
2

on y = S (2.10)

where the dimensionless parameters

ε =
h

l
, ρ =

ρ1

ρ2

, F =
c2
0

2gh
, σ̃ =

2σ0

lρ2c2
0

, (2.11)

are a shallowness parameter, density ratio, Froude number and a surface tension

parameter. The right-hand side of (2.10) is the contribution to the pressure jump

across the interface due to surface tension. The Froude number F measures the

importance of inertial forces to gravitational forces, whereas the surface tension

parameter σ̃ is proportional to the ratio of surface tension to inertial forces. Note that
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σ̃ is inversely proportional to the Weber number We, and is large when surface tension

is large. The Weber number measures the importance of inertial forces relative to the

dispersive forces of surface tension forces.

In what follows, canonical equations are derived in the limit ε → 0 with both

gravity and surface tension retained. In the long-wave analysis, the curvature of the

interface is small relative to its amplitude, and in order to allow for surface tension

effects to enter and compete with gravity, the distinguished limit,

σ̃ =
σ

ε
(2.12)

is considered, with σ an order one parameter. Using this, equation (2.10) becomes

ε2
[
φ2t − ρφ1t + (φ2x)

2 − ρ(φ1x)
2
]
+ (φ2y)

2 − ρ(φ1y)
2 +

ε2

F
(1− ρ)S

=
σε2Sxx

(1 + ε2S2
x)

3/2
on y = S. (2.13)

The problem stated above is exact and results from the chosen non-

dimensionalization; for example, setting ε = 1, (2.7)-(2.9), (2.13) are the equations

for a non-slender two-fluid system in a channel. In what follows we study strongly

nonlinear solutions valid in the limit ε → 0.

2.2 Derivation of the Nonlinear Evolution Equations

In the limit ε → 0, the only small parameter appearing in the governing equations

(2.7)-(2.9), (2.13) is ε2 and we assume the following asymptotic expansions,

S = S(0) + ε2S(1) + ε4S(2) + . . . , (2.14)

φi = φ
(0)
i + ε2φ

(1)
i + ε4φ

(2)
i + . . . , i = 1, 2. (2.15)

When (2.14) and (2.15) are substituted into (2.7)-(2.9) and (2.13) and successive

orders of ε2 are equated, the following problems emerge:

φi
(j)
yy = a

(j)
i (x, y, t) in Ωi, (2.16)
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φi
(j)
y = 0 at y = ±1, (2.17)

φi
(j)
y = c

(j)
i (x, y, t) at y = S(0)(x, t), (2.18)

where j = 0, 1, 2, . . .. The functions a
(j)
i and c

(j)
i force the linear operators on the

left-hand side and contain information from the previous stage j − 1, j = 1, 2, . . ..

The first few of these functions are

a
(0)
i = 0, a

(j)
i (x, y, t) = −φi

(j−1)
xx , j = 1, 2, . . . , (2.19)

c
(0)
i = 0, c

(1)
i =

1

2
S

(0)
t + S(0)

x φi
(0)
x , (2.20)

c
(2)
i =

1

2
S

(1)
t + S(1)

x φi
(0)
x + S(0)

x φi
(1)
x + S(1)φi

(0)
xx , (2.21)

where the potential functions and their derivatives in equations (2.20) and (2.21) are

evaluated at (x, y) = (x, S(0)(x, t)). For each j the problem is a linear boundary

value one, which has a solution (unique up to a constant) if and only if the following

compatibility condition is satisfied (see [76] for a situation involving elliptic operators

on the left):

〈a(j)
1 〉 =

∫ 1

0
dx

∫ 1

S(0)
a

(j)
1 (x, y, t)dy = −

∫ 1

0
c
(j)
1 (x, t)dx, (2.22)

〈a(j)
2 〉 =

∫ 1

0
dx

∫ S(0)

−1
a

(j)
2 (x, y, t)dy =

∫ 1

0
c
(j)
2 (x, t)dx. (2.23)

The above conditions assume (without loss of generality) periodic solutions with

period one in the x-direction. The leading order problem can be easily solved to give

solutions that are independent of y

φ
(0)
1 = Φ1(x, t) in Ω1 and φ

(0)
2 = Φ2(x, t) in Ω2. (2.24)

At the next order j = 1, the kinematic condition (2.18) together with solutions

(2.24) gives

1

2
S

(0)
t + ΦixS

(0)
x = φi

(1)
y . (2.25)
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Since φi
(1)
yy = −φi

(0)
xx = −Φixx from (2.16) and (2.24), and φi

(1)
y = 0 at y = ±1 from

(2.17), it follows that

φ1
(1)
y = (1− y)Φ1xx and φ2

(1)
y = −(1 + y)Φ2xx. (2.26)

Using expressions for φ1
(1)
y and φ2

(1)
y from (2.26) in the kinematic condition (2.25)

yields

1

2
S

(0)
t +

(
(S(0) − 1)Φ1x

)
x

= 0, (2.27)

1

2
S

(0)
t +

(
(S(0) + 1)Φ2x

)
x

= 0. (2.28)

The Bernoulli equation (2.13) is satisfied identically at order ε0, and at order ε2 yields,

Φ2t − ρΦ1t + (Φ2x)
2 − ρ(Φ1x)

2 +
1− ρ

F
S(0) = σS(0)

xx . (2.29)

Equations (2.27)-(2.29) are three equations for the three unknown functions Φ1,

Φ2 and S(0). They can be reduced to a set of two coupled nonlinear partial differential

equations by defining new variables Φ and V by

Φ =
1

2
(Φ1 + Φ2), V =

1

2
(Φ1 − Φ2). (2.30)

Addition and subtraction of (2.28) and (2.27) and integration with respect to x in

the latter instance gives

S
(0)
t + 2(ΦxS

(0) − Vx)x = 0, (2.31)

Φx = S(0)Vx + χ(t), (2.32)

where the function χ(t) is a result of the x integration. The value of χ(t) can be found

by considering the unperturbed flow at large |x|. Assuming that far away the interface

is flat, gives S(0)(±∞, t) = 0; Φx is the average of the undisturbed fluid velocities in

the two layers and if the fluids are at rest far away, it follows that χ(t) = 0. The
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general case has Φx 6= 0 and thus χ ≡ χ(t). The case χ = const. corresponds to

uniform inviscid streams while any time oscillatory far fields, for example, give rise

to a time dependence. Substitution of (2.32) into (2.31) eliminates Φ and yields the

equation

S
(0)
t + 2χS(0)

x + 2
(
S(0)2Vx

)
x

= 2Vxx.

A second equation is obtained by differentiation of (2.29) with respect to x and

elimination of Φi, i = 1, 2, in terms of the new variables (2.30), and with subsequent

elimination of Φ using (2.32). The evolution equations become

St + 2χSx + 2(S2W )x = 2Wx, (2.33)

(W − αSW )t + 2χ(W − αSW )x − (αS2W 2 − 2SW 2 + αW 2)x

=
α

F
Sx − σ

1 + ρ
Sxxx, (2.34)

where W = Vx, and the superscript zero has been dropped from S(0). Changing to

the inertial frame

(x, t) →
(
x− 2

∫ t

χ(t′)dt′, t
)

,

is seen to remove χ from the problem. The parameter α is the Atwood ratio defined

by

α =
1− ρ

1 + ρ
,

and −1 ≤ α ≤ 1. Denote the coefficient of Sxxx as

γ =
σ

1 + ρ
. (2.35)

Therefore, the resulting evolution equations are

St + 2(S2W )x = 2Wx, (2.36)
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(W − αSW )t − (αS2W 2 − 2SW 2 + αW 2)x =
α

F
Sx − γSxxx. (2.37)

In what follows, then, we study equations (2.36) and (2.37). When α is

positive/negative the heavier fluid is on the bottom/top; the latter case introduces

a Rayleigh-Taylor instability into the problem. The case α = 0 is that of density

matched fluids. The system (2.36), (2.37) contains various physical mechanisms of

interest including a Kelvin-Helmholtz instability and its modification due to surface

tension and/or gravity.

The case α = 1 that corresponds to the upper fluid having zero density (ρ1 = 0

⇒ ρ = 0 ⇒ α = 1) is particularly interesting because it yields closed form solitary

waves (see Section 2.5). Setting α = 1 in (2.37) and defining a new dependent variable

by U = (1− S)W , casts the system (2.36), (2.37) into the simpler form

St − 2 (U(1 + S))x = 0, Ut − (U2)x =
1

F
Sx − σSxxx. (2.38)

In view of the fact that explicit solitary waves exist, it would be interesting to study

the system (2.38) for complete integrability.

2.3 Integral Invariants of the Motion

There exists several integral properties of the flow which remain invariant with time

whatever is the motion of the interface S. These quantities can be monitored in a

computational solution of equations (2.36) and (2.37) as a check on its accuracy.

The following integrals, corresponding to mass, total circulation and energy, are

conserved quantities of the system

I1 =
∫

Sdx, I2 =
∫

(W − αSW )dx, (2.39)

I3 =
∫ [

1

2
W 2(1− αS)(1− S2)− α

4F
(1− S2) +

γ

4
S2

x

]
dx. (2.40)

The energy integral is derived by starting from the exact energy of the system and

applying the perturbation scheme of Section 2.2. It is easy to check a posteriori that

equation (2.34) follows from I3. The details of the derivation follow next.
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2.3.1 Conservation of Mass

Considerations of overall mass conservation show that the mass per wavelength

remains invariant. We use the dimensional notation of Section 2.1. At time t, consider

two strips Ω1 and Ω2 of the upper and lower fluids, respectively, each of x-dimension

equal to one wavelength l and of average y-dimension h as shown in Figure 2.2.

Figure 2.2 Regions Ω1 and Ω2 for determining mass and energy.

The total mass of the fluid instantaneously in Ω1 and Ω2 is

M = ρ1

∫ h

S

∫ l

0
dxdy + ρ2

∫ S

−h

∫ l

0
dxdy.

Changing to dimensionless variables by using (2.6) and then subsequently dropping

the superscript ∗, we obtain

M = ρ2lh

{
ρ1

ρ2

∫ 1

S

∫ 1

0
dxdy +

∫ S

−1

∫ 1

0
dxdy

}
.

Integrating with respect to y and using the density ratio ρ = ρ1

ρ2
, we can write

M = ρ2lh
∫ 1

0
{ρ(1− S) + (S + 1)} dx = ρ2lh

∫ 1

0
{(ρ + 1)

+(1− ρ)S} dx = ρ2lh(1 + ρ)
∫ 1

0
(1 + αS)dx,

where we used the definition of Atwood ratio α = 1−ρ
1−ρ

. Then the dimensionless mass

is

M̃ =
M

ρ2lh
= (1 + ρ)

∫ 1

0
(1 + αS)dx
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and this quantity is conserved. Then

M0 ≡ M̃

1 + ρ
=

∫ 1

0
(1 + αS)dx = 1 + α

∫ 1

0
S(x, t)dx = const.

Therefore, the integral

∫ 1

0
S(x, t)dx = I1

is the first constant of motion.

The same result may be obtained if we note that equation (2.36) may be written

in the conservation law form

St + [2(S2 − 1)W ]x = 0,

and hence S is the conserved density, and −2(S2 − 1)W , the flux of S. Since we

assume periodicity of S and W , it follows that

I1 =
∫ 1

0
S(x, t)dx

is the constant of motion [66].

2.3.2 Total Circulation Conservation

Let us write equation (2.37) in the conservative form, i.e.

[(1− αS)W ]t +

[
σ

1 + ρ
Sxx − α

F
S − (αS2 − 2S + α)W 2

]

x

= 0.

By the above reasonings, we conclude that

I2 =
∫ 1

0
(1− αS)Wdx (2.41)

is the second constant of motion.

Let us analyze the above conserved quantity. For this purpose consider the

expression under the integral sign in (2.41) using definitions of α, ρ and W .

(1− αS)W = W − 1− ρ

1 + ρ
SW =

1

1 + ρ
{(1 + ρ)W − (1− ρ)SW}
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=
1

1 + ρ
{W + ρW − SW + ρSW} =

1

1 + ρ
{W (1− S) + ρW (1 + S)}

=
1

1 + ρ

{∫ 1

S
Wdy + ρ

∫ S

−1
Wdy

}
=

1

1 + ρ

1

ρ2

{
ρ2

∫ 1

S
Wdy + ρ1

∫ S

−1
Wdy

}

=
1

(1 + ρ)ρ2

{
ρ2

∫ 1

S
Vxdy + ρ1

∫ S

−1
Vxdy

}
.

Therefore, equation (2.41) may be written as

I2 =
1

(1 + ρ)ρ2

[∫ 1

0

∫ 1

S
ρ2Vxdxdy +

∫ 1

0

∫ S

−1
ρ1Vxdxdy

]
(2.42)

where V = 1
2
(Φ1 − Φ2) and Vx is the leading order component of the velocity jump

across the interface or the vortex sheet strength. Therefore, the conserved quantity

in (2.41) is the total amount of circulation of vorticity or the circulation of the vortex

sheet in one periodic cell. The total circulation may be obtained by changing from the

double integral in (2.42) to the line integral along the interface using Green’s theorem.

Due to the long wave approximation used to derive our modeling equations, ∂
∂s
∼ ∂

∂x

in the dimensional variables, where s is the arc length, that justifies the physical

meaning of the constant of motion I2. The total circulation is conserved since we

assumed flows to be irrotational.

2.3.3 Conservation of Energy

Strictly speaking, the total energy for two-dimensional stratified flow is infinite.

However, the perturbation energy of the disturbed flow away for a steady-state

value, evaluated over one spatial period of the flow, is finite and conserved [6]. The

dimensional notation of Section 2.1 is used to obtain the total energy of the system at

a given time. The energy of the motion has three components, namely (i) the kinetic

energy, (ii) the potential energy, and (iii) the interfacial surface energy associated

with work done against surface tension in deforming the interface S. The datum

line for potential and interfacial surface energy is taken at y = 0. Without loss of
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generality we assume the flow to be periodic with period l. Then the total energy per

unit width of the channel and in a single periodic cell is

E =
1

2
ρ1

∫ l

0

∫ h

S
((φ1x)

2 + (φ1y)
2)dxdy +

1

2
ρ2

∫ l

0

∫ S

−h
((φ2x)

2 + (φ2y)
2)dxdy

+ ρ1g
∫ l

0

∫ h

S
ydydx + ρ2g

∫ l

0

∫ S

−h
ydydx + σ0

∫ l

0
(1 + S2

x)
1/2dx. (2.43)

The non-dimensionalization (2.6) in (2.43) (where we subsequently drop the

superscript ∗) yields

E =
1

2
ρ

∫ 1

0

∫ 1

S
((φ1x)

2 +
1

ε2
(φ1y)

2)dxdy +
1

2

∫ 1

0

∫ S

−1
((φ2x)

2 +
1

ε2
(φ2y)

2)dxdy

+
1

4F
(ρ− 1)

∫ 1

0
(1− S2)dx +

σ̃

2ε

∫ 1

0
(1 + ε2S2

x)
1/2dx. (2.44)

Equation (2.44) is exact since it is the result of a change of variables alone. The long

wave approximation of interest is achieved through the ansatz (2.14), (2.15) and the

corresponding leading order solutions (2.24). This yields the functional

E =
1

2
ρ

∫ 1

0

∫ 1

S
(Φ1x)

2dxdy +
1

2

∫ 1

0

∫ S

−1
(Φ2x)

2dxdy

+
1

4F
(ρ− 1)

∫ 1

0
(1− S2)dx +

σ̃

2ε

(
1 +

1

2
ε2

∫ 1

0
S2

xdx
)

. (2.45)

It follows from (2.45) that strong surface tension of order ε−1 is required to compete

with inertial and gravity terms, an observation already established in Section 2.1.

Use of (2.12) along with the solutions (2.30), (2.32) with χ(t) = 0 recasts (2.45) into

E0 =
∫ 1

0

(
1

2
W 2(1− αS)(1− S2)− α

4F
(1− S2) +

γ

4
S2

x

)
dx, (2.46)

where E0 is a constant since energy is conserved at each level of the expansion.

The expression (2.46) is a conserved quantity for the system. Finally we show

that this is consistent with the governing equations (2.36) and (2.37). Differentiation

of (2.46) with respect to t and elimination of St and Wt from (2.36), (2.37) yields

∫ 1

0

∂

∂x

(
W (1− S2)W 2(α− 2S + αS2) +

α

F
WS(1− S2)

− γ
{
W (1− S2)Sxx − Sx[(1− S2)W ]x

})
dx = 0. (2.47)
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Clearly the integral is zero since the integrand is a derivative and consistency with

the evolution equations is verified.

2.4 Linear Stability Properties of the Evolution Equations

Consider next the evolution of infinitesimal wavy disturbances at the interface

according to the model (2.36), (2.37). Writing S = δS̃(x, t) and W = W0 + δW̃ (x, t)

for infinitesimally small δ, yields the linear equation

W̃tt − 4αW0W̃xt +
(
4W 2

0 −
2α

F

)
W̃xx + 2γW̃xxxx = 0, (2.48)

where W0 measures the strength of the underlying vortex sheet flow. Using the

method of normal modes, we assume that an arbitrary disturbance is proportional to

exp(ikx + ωt), i.e.,

S̃ = Ŝ eikx+ωt, W̃ = Ŵ eikx+ωt,

where k is wavenumber, ω is growth rate and Ŝ, Ŵ are of order 1. This gives the

dispersion relation

ω = 2ikαW0 ± k
√

2
(
2W 2

0 (1− α2)− α

F
− γk2

)1/2

. (2.49)

Instability occurs when the real part of ω is positive. Surface tension stabilizes short-

wave disturbances in a dispersive manner while in its absence, and for α 6= 1 (i.e.,

when an upper layer is present), the nonlinear problem is ill-posed and is expected

to encounter a finite-time singularity. For unbounded vortex sheets this has been

analyzed by Moore [67, 69] (see also Caflisch and Orellana [15, 16]), and singularity

formation was studied numerically by Krasny [53]. We will address the singularity

formation problem in Section 2.7 but now we consider the construction of “exact”

traveling wave solutions. Guided by the evolution of vortex sheets, we expect that

the class of solutions found may emerge from the initial value problem as long as
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the dispersion relation (2.49) gives neutrally stable waves or waves with only a small

number of active modes. This can be quantified by a stability analysis of the nonlinear

traveling waves, and is the subject of current work.

The dispersion relation (2.49) admits stable short waves even in the absence of

surface tension, as long as F ≤ α
2W 2

0 (1−α2)
. This balance between Kelvin-Helmholtz

instability and stable density stratification is a result of the long wave shallow-water

type approximation used to derive the nonlinear system; in fact, the Kelvin-Helmholtz

instability dominates at short waves giving growth rates of order k as opposed to the

order k1/2 that emerge from Rayleigh-Taylor stability or instability (see for example

Drazin and Reid [30], p.14).

This apparent discrepancy can be explained by noting that the result (2.49) is

the leading order in ε growth rate of the exact linear dispersion relation. This can be

found in a routine way starting from (2.7)-(2.9), (2.13), looking for normal modes as

above and solving in a channel of dimensionless thickness of 2. The result is

ω = −2ikVc + 2ikαW0

±
(

4W 2
0 (1− α2)k2 − 2kα tanh(εk)

εF
− 2σk3 tanh(εk)

ε(1 + ρ)

)1/2

, (2.50)

where Vc = 1
2
(Φ10 + Φ20)x is the average of unperturbed velocities in each layer,

W0 = 1
2
(Φ10 − Φ20)x is as above, and Φi0 , i = 1, 2, are unperturbed velocity potentials.

The relation (2.50) is exact for channels and the limit ε → 0 recovers the relation

(2.49) above once the term containing Vc is removed by a Galilean transformation.

We can conclude, therefore, that the short-wave spectrum of the long-wave nonlinear

equations gives a more stable behavior than that of the full spectrum. This could be

important for solutions that violate the long wave approximation (e.g., infinite slope

singularities), but our concern is with waves having sufficiently high surface tension

that the flow is either linearly neutrally stable or only has a few unstable modes.
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Figure 2.3 Stability diagram — dependence of critical wavenumber kc on surface
tension coefficient γ: W0 = 1, α = 0.5, F = 1 and γ1 = 0.2, γ2 = 1, γ3 = 2.

According to (2.49) all waves with wavenumbers larger than

kc =

[
2W 2

0 (1− α2)− α/F

γ

]1/2

,

are linearly neutrally stable. The value kc is called a critical wavenumber. Dependence

of the growth rate Re ω on wavenumber k is presented in Figure 2.3 for representative

values W0 = 1, α = 0.5, γ1 = 0.2, γ2 = 1, γ3 = 2 and F = 1. As can be seen from this

graph, as the surface coefficient γ becomes bigger, the critical wave number kc gets

smaller, therefore the number of linearly unstable modes decreases when γ increases.

It is also of interest to consider spatially periodic disturbances of finite length

2L, say. It is easy to show that the system is linearly neutrally stable for any

γ >

[
L2

π2

(
2W 2

0 (1− α2)− α

F

)]
.

The number of linearly unstable modes, kc say, is given by

kc = mod

[
L2

γπ2

(
2W 2

0 (1− α2)− α

F

)]1/2

(2.51)
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where mod means the integral part of a number. This result is used later in our

discussion of nonlinear waves.

In the absence of surface tension, we have linear neutral stability as long as

F ≤ α

2W0(1− α2)
.

The nonlinear evolution of an unbounded vortex sheet in the absence of surface

tension, encounters a singularity after a finite time due to the transfer of energy to

high wavenumbers (Moore [67] and Caflisch & Orellana [16]). Setting γ = α = 0

we recover the classical result ω = ±2kW0. For non-zero Atwood ratios but in the

absence of surface tension still, the condition for instability is given by

−
(

1 +
1

16W 4
0 F 2

)1/2

− 1

4W 2
0 F

< α <

(
1 +

1

16W 4
0 F 2

)1/2

− 1

4W 2
0 F

.

Clearly the lower limit is less than −1 and so is outside the range of α; the appropriate

range of α which yields instability is, then

−1 < α <

(
1 +

1

16W 4
0 F 2

)1/2

− 1

4W 2
0 F

. (2.52)

Condition (2.52) implies instability for any α smaller than zero as expected since such

a case describes the motion with the heavier fluid on top. The reason the growth rate

is O(k) instead of the classical O(k1/2) of Rayleigh-Taylor instability, lies in the long

wavelength assumption used to derive our model equations. When the heavier fluid

is below the lighter one there is a competing effect between the Kelvin-Helmholtz

instability and the density stratification, and the system becomes linearly neutrally

stable when (2.52) is violated, i.e., when α is in the range

(
1 +

1

16W 4
0 F 2

)1/2

− 1

4W 2
0 F

< α < 1. (2.53)

Growth rate curves corresponding to unstable (α, F ) values exhibit a short wave

instability which is reduced to a finite band of unstable waves when surface tension

is included; any wavenumber larger than kc =
[

2W 2
0 (1−α2)−α/F

γ

]1/2
is stabilized.
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Note that in the absence of surface tension and Kelvin-Helmholtz instability,

i.e. γ → 0 and W0 → 0, inequality (2.53) reduces to 0 < α < 1, which is the

classical stability criterion for the Rayleigh-Taylor instability mode. Indeed, denoting

ε = 16W 4
0 F 2 ¿ 1 for small W0, we can rewrite (2.53) as

(
1 +

1

ε2

)1/2

− 1

ε
=

1

ε
(1 + ε2)1/2 − 1

ε
=

1

ε

(
1 +

1

2
ε2 + O(ε4)

)
− 1

ε
= O(ε).

In the absence of surface tension, the range of the Atwood ratio 0 < α < 1, i.e., when

the lighter fluid is above the heavier one, ρ1 < ρ2, is called the gravitationally stable

regime or regime with a gravitationally stable stratification.

2.5 Nonlinear Traveling Waves

This section is devoted to the construction of traveling-wave solutions to the system

(2.36) and (2.37). Numerical results are presented in Section 2.6. Gravity and

interfacial tension effects are taken to be of equal importance and solutions are sought

in a Galilean steady moving frame of reference which has speed c. The transformation

S = S(ξ), W = W (ξ), ξ = x− ct

reduces the system (2.36), (2.37) to the ordinary differential equations that govern

the shape and vortex sheet strength of the traveling wave:

−cS ′ + 2(S2W )′ = 2W ′, (2.54)

−c(W − αSW )′ − (αS2W 2 − 2SW 2 + αW 2)′ =
α

F
S ′ − γS ′′′, (2.55)

with ′ denoting differentiation with respect to ξ. Integration of (2.54), (2.55) yields

W = −1

2

A + cS

1− S2
, (2.56)

−c(W − αSW )− αS2W 2 + 2SW 2 − αW 2 =
α

F
S − γS ′′ + B, (2.57)
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where A and B are constants of integration. Next, multiplication of (2.57) by S ′,

elimination of W from (2.56) and integration gives the following equation for S (see

Appendix B for details):

1

2
γ(S ′)2 =

α

2F
S2+BS−1

4
αc2S+D−1

8

(A + c)2(1− α)

1− S
−1

8

(A− c)2(1 + α)

1 + S
(2.58)

where D is another constant of integration. We are interested in the range −1 <

S(ξ) < 1. It is found that for a wide range of parameters, two roots of (S ′)2 = 0 in

−1 < S < 1 can exist. These values define the wave maximum and minimum and

solutions easily follow by quadrature. Obviously, no traveling waves exist if (S ′)2 < 0

for all −1 < S < 1.

2.5.1 Solitary Waves

We look for solitary waves by setting S and its derivatives equal to zero at infinity.

This implies that −A
2

is equal to the undisturbed vortex sheet strength at infinity.

In addition, a double root of (S ′)2 = 0 is at S = 0 (this local double root behavior

requires S to tend to zero as |ξ| tends to infinity), and the construction is complete

if another root exists in (−1, 1). For solitary waves the constants B and D can be

expressed in terms of A and c by,

B =
A

4
(2c− αA), D =

1

4
(A2 + c2 − 2αAc), (2.59)

and (2.58) becomes

γ(S ′)2 = S2

[
α

F
+

αS − 1

2(1− S2)

{
A2 + c2 − 2cAβ(S)

}]
. (2.60)

The function β(S) is given by

β(S) =
S − α

αS − 1
⇒ − 1 < β < 1, (2.61)

and the double root at S = 0 is clearly seen in (2.60). Using (2.61) and the fact

A2 + c2 − 2cAβ(S) = (A − cβ)2 + c2(1 − β2) ≥ 0, shows that (S ′)2 < 0 whenever
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α ≤ 0. Physically, this says that the model does not admit solitary waves if the

densities are equal or if a heavier fluid lies above a lighter one. This is expected due

to the Rayleigh-Taylor instability.

In what follows, then, we consider α > 0 and re-write (2.60) as

γ(S ′)2 =
S2

1− S2
p2(S), (2.62)

p2(S) = −α

F
S2 +

α

2

(
A2 + c2 − 2cA

α

)
S +

(
α

F
− A2 + c2

2
+ αAc

)
. (2.63)

The quadratic p2(S) plays a crucial role in the existence of solitary waves for unequal

densities leading to a two-parameter family of solutions depending on A and c. The

multiplying function S2/(1−S2) in (2.62) is concave up, symmetric about S = 0 and

tends to plus infinity as S = ±1 from below and above, respectively. In addition, p2

is convex since d2p2

dS2 = −2α
F

< 0. Four relevant possibilities emerge: (i) p2(S) has two

real roots in −1 < S < 1 of opposite signs, (ii) p2(S) has two real roots in −1 < S < 1

with the same sign, (iii) p2(S) has only one real root in −1 < S < 1, (iv) p2(S) has

no real roots in −1 < S < 1. Cases (ii) and (iv) preclude solitary waves while case

(i) allows two distinct solitary waves with the same propagation speed and case (iii)

only one. A schematic representation of these four possibilities is given in Figure

2.4. Only non-negative values of S2
ξ can be considered and the sketches are phase

diagrams. For example, traversing the part of the phase plane in Figure 2.4 (i) from

the negative root S = S2 to S = 0, constructs half the “left” solitary wave (a wave of

depression) from its global minimum value S2 < 0 at ξ = 0 (the origin can be fixed by

the translation invariance of the equations) to its zero asymptotic value at ξ = +∞;

the other half follows from symmetry. A similar construction gives the positive or

“right” solitary wave (a wave of elevation) by starting at S = S1 > 0 at ξ = 0 and

monotonically decreasing to the zero asymptotic value at ξ = +∞. Each solitary

wave can be constructed independently and this becomes useful in our analysis that

casts these solutions in terms of elliptic integrals. For case (ii), it is clear from the
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canonical diagram in Figure 2.4 (ii), that it is impossible to connect either of the roots

S1, S2 with the homoclinic point S = 0, without traversing a region where S2
ξ < 0 -

this means that no real solitary waves exist in such instances.
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Figure 2.4 Schematic of the four canonical cases for solitary waves.

The Case A = 0 — Zero Vortex Sheet Strength

When A = 0, Kelvin-Helmholtz instabilities are absent; in addition, these

solutions can be used to obtain others with A 6= 0 by continuation. For A = 0,

equation (2.62) contains c2 on its own and so constructed waves can have equal and

opposite speeds. Note also that α > 0 as explained previously, therefore, we have a

gravitationally stable system.

Setting A = 0 in (2.63) and solving, we obtain the two roots

S1,2 = q ±
[
q2 − 2

α
q + 1

]1/2

, q =
1

4
Fc2, (2.64)



34

and for real distinct roots we must have q2 − 2
α
q + 1 > 0, that is

q > q1 =
1 +

√
1− α2

α
or q < q2 =

1−√1− α2

α
. (2.65)

It is easy to establish the existence of two solitary waves for small values of q; the

two roots of (2.64) for 0 < q ¿ 1 are

S1 = 1− 1− α

α
q + O(q2) ⇒ 0 < S1 < 1,

S2 = −1 +
1 + α

α
q + O(q2) ⇒ −1 < S2 < 0. (2.66)

Continuation to larger values of q provides solitary waves with larger speeds and

smaller amplitudes. The inequalities (2.65) define two regions in the q − α plane

where solitary waves may exist. These are depicted as regions 1 and 2 in Figure 2.5

and correspond to the right and left bounds of (2.65) respectively. Given α > 0 and a

Froude number F , we need to find values of c for which S1 < 1 and/or −1 < S2 < 0.
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α

q

Regions 1 and 2 where solitary waves are possible

Figure 2.5 The regions 1 and 2 in the q − α plane where solitary waves may be
possible.
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A necessary condition for solitary waves to exist is for q and α to lie in either

of regions 1 and 2 of Figure 2.5. The roots (2.64) in region 1 are

S1(q) = q + (q1 − q)1/2(q2 − q)1/2,

S2(q) = q − (q1 − q)1/2(q2 − q)1/2, 0 < q < q2 < 1. (2.67)

It is easy to establish that S1(0) = (q1q2)
1/2 = 1, S1(q2) = q2 < 1, dS1

dq
(0) = 1−(1/α) <

0, dS1

dq
(q2−) = −∞; the root S1(q) is monotonic decreasing from 1 to q2 and all

these values admit solitary waves of positive amplitude q2 ≤ S1(q) < 1. Similarly,

S2(0) = −1, S2(q2) = q2,
dS2

dq
(0) = 1 + (1/α) > 0 and S2

dq
(q2−) = +∞; the root S2(q)

increases monotonically from −1 to q2 and becomes zero at q = α/2. Since α
2

< q2,

the interval α
2

< q < q2 supports two positive roots both less than 1. This is case (ii)

described earlier and depicted in Figure 2.4 (ii) and so is excluded. The conclusion,

then, is that two solitary waves exist (waves of elevation and depression, respectively)

for the range

0 <
1

4
Fc2 ≤ α

2
. (2.68)

The results presented above are summarized in Figure 2.6 for a typical case having

α = 1/2.

Next, we consider the possibility of solitary waves in Region 2 of Figure 2.5.

The roots of (2.64) are

S1(q) = q + (q − q1)
1/2(q − q2)

1/2,

S2(q) = q − (q − q1)
1/2(q − q2)

1/2, q > q1 > 1. (2.69)

We find S1(q1) = S2(q1) = q1 > 1, and S1(q) increases monotonically as q increases

with an asymptote S1 ∼ 2q at large q; S2(q) is monotonic decreasing with the

asymptotic behavior S2 → (1/α) as q → ∞. Since (1/α) > 1, there can be no

admissible solitary waves emerging from Region 2.
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Figure 2.6 Admissible solitary waves in Region 1 (0 < q < q2) for a typical value
α = .5. No solitary waves are possible to the right of the dashed line and two distinct
waves exist to the left.

To summarize, we have found that for a given Froude number F and Atwood

ratio 0 < α < 1, two solitary waves exist having the same speed. One wave is

everywhere positive (the S1 branch of Figure 2.6) and the other is everywhere negative

(the S2 branch of Figure 2.6). The wave speeds satisfy

|c| ≤
√

2α

F
, (2.70)

with equality achieved when the negative solitary wave disappears and the positive

one (see Figure 2.10 for this situation) has its smallest possible amplitude S1min, say,

given by S1min = α. At slower speeds, two solitary waves exist with amplitudes given

by (2.67).

Having established the existence of solitary waves for A = 0, we can construct

solutions for A 6= 0 by continuation methods. For asymptotically small values of A

the solitary wave amplitudes and speeds change by order |A| in a regular perturbation

manner. We do not give details of such a calculation but instead use such results to

guide the construction of waves numerically.
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Some Exact Solutions for α = 1 - Upper Layer of Zero Density

In certain cases exact solutions can be constructed depending on the wave

amplitude S0. With α = 1, (2.63) is a perfect square and it is easily shown that

(2.62) becomes

γ(S ′)2 =
S2(S + S0)

F (1 + S)
, S0 = 1− F

2
(A− c)2. (2.71)

From the form of the right-hand side of (2.71), the only admissible solitary waves

have the amplitude 0 < S0 < 1. The resulting wave is negative everywhere and has

a minimum amplitude of −S0. In addition, the wave speed satisfies

A−
√

2

F
< c < A +

√
2

F
, (2.72)

where A is related to the vortex sheet strength at infinity (lim|x|→∞ W (x) = −A
2
).

The solution to equation (2.71) is given implicitly by (half the wave in the region

ξ > 0 where S ′ > 0 is constructed this way, the other half by reflection)

∫ S

−S0

(
t + 1

t + S0

)1/2 dt

t
=

ξ√
γF

. (2.73)

The integral can be done exactly by making a substitution, for example Ỹ 2 = t+S0

t+1
,

giving

1 + Y

1− Y

(
Y −√S0

Y +
√

S0

)1/
√

S0

= exp(
ξ√
γF

), (2.74)

where Y 2 = S+S0

S+1
. It can be seen that for general values of the wave amplitude S0, the

solution must remain in implicit form. Explicit solutions are possible when S0 = 1
4

and S0 = 1
9

only, because (2.74) becomes a cubic or a quartic algebraic equation in

Y , then. We construct the explicit solutions for these cases next.

Explicit Solution for S0 = 1
4

Manipulation of (2.74) leads to the following cubic equation for Y :

Y 3 − 3

4
Y − 1

4
τ = 0, τ = tanh(2ξ/

√
γF ). (2.75)
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Equation (2.75) has three real solutions that can be found explicitly by using Cardan’s

method [52]. We choose one of these roots which satisfies conditions limτ→0 Y = 0,

limτ→1 Y = −1
2
. The solution is

Y = − cos
(

arccos τ + π

3

)
, S(ξ) = −(1/4)− Y 2

1− Y 2
. (2.76)

It is easy to check, using the fact that τ(ξ = 0) = 0 and τ → 1 as ξ → ∞, that

S(0) = −1/4 and Y 2 → (1/4) as ξ → ∞, thus giving the required solitary wave

behavior at infinity. The decay to zero at infinity is exponential. The graph of this

solitary wave is presented in Figure 2.7.
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Figure 2.7 Solitary wave for α = 1, S0 = 1/4.

Explicit Solution for S0 = 1
9

Equation (2.74) in this case can be written in the form

Y 4 − 2

3
Y 2 − 8

27τ
Y − 1

27
= 0, τ = tanh(2ξ/

√
γF ). (2.77)

Equation (2.77) can be solved, for instance, by Ferrari’s method (see Abramowitz &

Stegun[1]). We found that this equation has two real roots and two complex conjugate

ones and the solitary wave solution is found explicitly by choosing one of the real roots

that satisfies appropriate conditions for the solitary wave:

Y =
1

3





(
η +

3

2

)1/2

−
(
−η +

3

2
+ 2

[
η2 +

3

4

]1/2
)1/2



 ,

η =
(

1

τ 2
− 1

)1/3

− 1

2
,

S(ξ) = −(1/9)− Y 2

1− Y 2
. (2.78)
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As before, we can check that S(0) = −1
9

and S(ξ) → 0 as ξ → ∞, which are

the properties that the solitary wave must satisfy.

Connection with Elliptic Integrals

The differential equation that gives solitary waves is equation (2.62) with (2.63).

As discussed previously we have

p2(S) ≥ 0, S ∈ [S2, S1], −1 < S2 ≤ 0 ≤ S1 < 1. (2.79)

Defining constants a2 = − α
F

< 0, a1 = α
2
(A2 + c2 − 2cA

α
), a0 = α

F
− A2+c2

2
+ αAc and

γ̂ =
√−a2

γ
, and the ratios a = a1

a2
, b = a0

a2
, equation (2.62) is

dS

dξ
= ±γ̂S

√
S2 + aS + b

S2 − 1
≡ ±F (S), (2.80)

and in separated form

dS

±F (S)
= dξ or

dS

±γ̂S
√

S2+aS+b
S2−1

= dξ. (2.81)

In view of (2.79), the polynomial p̃2(S) = S2 + aS + b has two real distinct roots S1,

S2, so that p̃2(S) = (S − S1)(S − S2) ≤ 0 for S ∈ [S2, S1]. Hence (S ′)2 is positive

there. Note the notation introduced earlier which fixes 0 < S1 < 1 and −1 < S2 < 0.

This is the general case of interest.

Since (dS/dξ)2 has a double root at zero and two simple roots S1 and S2, we have

two distinct solitary waves and each wave is treated separately. First, we integrate

(2.81) from S2 to S, S2 ≤ S ≤ 0, taking the plus sign of the square root. This choice

constructs the right half of the solitary wave of depression; the other half of the wave

follows by symmetry. Invoking Galilean invariance, we can shift the origin to be at

the wave trough and the following implicit solution is found,

ξ =
∫ S

S2

dt

F (t)
, S2 ≤ S ≤ 0. (2.82)
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Integration of (2.81) from S to S1, 0 ≤ S ≤ S1 and use of the minus sign of the square

root, constructs the right half of the solitary wave of elevation (translation invariance

is used also to fix the origin at the wave crest); the solution is

ξ = −
∫ S1

S

dt

F (t)
, 0 ≤ S ≤ S1. (2.83)

t2 t1

+__+ + +

-1 0 1

Figure 2.8 Polynomial P4(t) is positive in (−∞,−1)
⋃

(S2, S1)
⋃

(1,∞) and negative
in (−1, S2)

⋃
(S1, 1).

Consider equation (2.82) first. Introducing the polynomial

P4(t) = (1− t)(S1 − t)(t− S2)(t + 1), (2.84)

(note that P4(t) is positive for t ∈ (−∞,−1)
⋃

(S2, S1)
⋃

(1,∞), see Figure 2.8), the

solution becomes

ξ =
1

γ̂





∫ S

S2

dt

t
√

P4(t)
−

∫ S

S2

tdt√
P4(t)



 ≡ 1

γ̂
{I1(S)− I2(S)} . (2.85)

The integrals I1(S) and I2(S) can be written as a linear combination of incomplete

elliptic integrals of the third kind (see Appendix C for definition); they are special

cases of the indefinite integrals covered in items 254.11 and 254.10 on page 113 of

Byrd & Friedman [14]. It is useful to introduce the following constants:

k2 =
2(S1 − S2)

(1− S2)(S1 + 1)
, λ =

2√
(1− S2)(S1 + 1)

,

β2 =
S1 − S2

1 + S1

, β̃2 =
S1 − S2

1− S2

, (2.86)

and functions

ϕ(S) = sin−1

√√√√(S1 + 1)(S − S2)

(S1 − S2)(S + 1)
, ϕ̃(S) = sin−1

√√√√(1− S2)(S1 − S)

(S1 − S2)(1− S)
. (2.87)
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The incomplete elliptic integral of the third kind is central in our solutions. This

is given by (see [14]):

Π(ϕ, β2, k) ≡
∫ S

0

dt

(1− β2t2)
√

(1− t2)(1− k2t2)

=
∫ ϕ

0

dθ

(1− β2 sin2 θ)
√

1− k2 sin2 θ
. (2.88)

The solitary waves are given implicitly in terms of Π. The wave of depression

has

γ̂

λ
ξ =

1 + S2

S2

Π(ϕ, β2/|S2|, k)− (1 + S2)Π(ϕ, β2, k), (2.89)

and the wave of elevation is given by

γ̂

λ
ξ =

S1 − 1

S1

Π(ϕ̃, β̃2/S1, k) + (S1 − 1)Π(ϕ̃, β̃2, k). (2.90)

2.5.2 Waves of Finite Periods

For finite periods equation (2.58) must be solved for all values of the constants A, B,D

and c, providing a four-parameter family of solutions. The equation is conveniently

written as

γ(S ′)2 =
1

1− S2
p4(S), (2.91)

where

p4(S) = −α

F
S4 +

(
αc2

2
− 2B

)
S3 +

(
α

F
− 2D

)
S2+

(
2B − Ac +

αA2

2

)
S +

(
2D − A2 + c2

2
+ αAc

)
.

Since α and F are positive, p4(S) has at most two local maxima and one local

minimum. Depending on the coefficients of p4(S), two, one or no admissible waves

can be found. Any two successive roots in −1 < S < 1 describe the wave minimum

and wave maximum respectively as long as the p4 is positive between them. If the
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function is concave between the roots no traveling wave exists since (S ′)2 is negative

then.

It is interesting to consider whether the periodic waves can be expressed in terms

of elliptic integrals. Inspection of (2.91) and in particular its square root, indicates

that the integrals that need to be calculated have integrands of the type

1− S2

√
(1− S)(1 + S)p4(S)

, (2.92)

that is they are rational functions of a polynomial and the square root of a sixth

degree polynomial. This is not an elliptic integral. The integrand (2.92) degenerates

to give a quartic under the radical and so elliptic integrals emerge. Comparing with

solutions of the Kortweg-deVries (KdV) equation, for instance, we see that there is an

additional level of complexity for the system studied here, in that the periodic waves of

the KdV which are found in terms of elliptic integrals produce the well-known analytic

sech2 profiles as the period becomes infinite. In the present case, the periodic waves

are not elliptic integrals but provide elliptic integral representations (albeit implicit)

as the period becomes infinite to yield solitary waves.

In what follows we construct numerical solutions for both periodic and solitary

waves.

2.6 Numerical Construction of Periodic and Solitary Waves

The results presented here were computed by integration of equation (2.58) for waves

of finite periods and (2.60) for solitary waves. The wave profile is symmetric about

some horizontal position which can be taken to be the origin, and it is enough to

calculate the wave shape between trough and crest; a full wave follows by reflection.

For definiteness, the plus sign is taken for S ′, and it is convenient to use S as the

variable of integration and to compute the corresponding ξ. Consequently, without

loss of generality, all traveling waves begin or end at ξ = 0. In the case of finite

periods, for a given set of real constants A, B, c and D the possible values of S which
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satisfy (S ′)2 = 0 are found by Newton-Raphson iteration and the interval defined by

the roots is subdivided into a regular mesh (typically 500 or 1000 points were used

without any change in the solution to within graphical accuracy). The integration

starts from the left-most root, the wave minimum, and is continued to the right-most,

the wave maximum, calculating x at each S. Slight modifications are made in the

solitary wave case since one of the wave extrema is at S = 0.

2.6.1 Periodic Waves

In order to fix things, we choose to study the behavior of the traveling waves as

the Froude number and Atwood ratio vary with other constants held fixed. An

extensive parameter study is not attempted here since the results are expected to be

qualitatively similar. The numerical solutions presented in this sub-section have the

following constants fixed:

A = 3.0, B = 4.0, c = 2.0, D = 2.0, γ = 1.0. (2.93)

The first set of results examines the effect of the Atwood ratio α on interfacial

profiles. The Froude number is fixed at unit value. Figure 2.9 (a) presents a

family of curves in the phase plane for the cases α = 0.9, 0.8, 0.7, 0.5, 0.3, 0.1 and the

corresponding traveling waves over one complete period, are shown in Figure 2.9 (b).

These results indicate that as the Atwood ratio decreases to smaller positive values,

the wave height (crest to trough) decreases and at the same time the period increases.

As the value of α increases, the effect of the upper fluid becomes less important and

the wave can achieve larger amplitudes and smaller wavelengths for a given speed.

Viscosity is absent from the present model and the reduction of amplitude is due to

a transfer of momentum between the upper and lower fluids.

In the second set of results, the Atwood ratio is fixed at α = 0.5 and the Froude

number F is varied. Figure 2.10 (a) presents phase plane curves for F = 3.0, 0.5,

0.25, 0.05, 0.035 and Figure 2.10 (b) shows profiles of traveling waves obtained for
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the corresponding values of F . The wave profile is virtually unchanged at Froude
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Figure 2.10 α = 0.5 and F varies, 0.035 ≤ F ≤ 3.0. Two simple roots. (a) Phase
plane curves; (b) traveling wave profiles.

numbers larger than 3.0; this was checked numerically by dropping the 1/F term in

(2.58). As indicated by Figure 2.10 (a), the wave amplitude and wavelength increase

as the Froude number decreases; there is very little difference between the waves

corresponding to F = 3.0 and F = 0.5. As the Froude number decreases further

some interesting nonlinear behavior is found. The profile at F = .05, for example,

has four inflexion points as opposed to that at F = .25 which has two. This feature

carries through to lower values of F also. The amplitude of the wave also increases

with decreasing Froude number and at the smallest value of F = 0.01 reported here,

the wave almost touches the upper and lower channel walls (See Figure 2.11 for this
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situation). Another interesting feature is that the wavelength of the periodic waves

increases as F decreases; for F = 0.05 the wavelength is approximately 1.47. A

further decrease in F below 0.05 yields traveling waves with increasing wavelengths,

see Figures 2.14 (a) and (b).

We also observe that for values 0.035 ≤ F ≤ 3.0, the phase plane curves have

only two simple roots — points of intersection with x-axis. This corresponds to having

only one traveling wave with positive amplitude for each value of F . As was mentioned

above, phase curves for values F ≥ 0.25 have only two points of inflexion. When F

decreases, the left part of the phase curve, that it below x-axis, changes so that it

has concave regions also (See Figure 2.10 (a)) which corresponds to the appearance

of four points of inflexion instead of two. On the other hand, as F decreases, this left

part of the phase curve approaches the x-axis and at the critical value F = 0.0323627

touches it as seen in Figure 2.12 (a). This double root will not produce any additional

traveling wave. We still have one positive traveling wave shown in Figure 2.12 (b) and

one “degenerate” wave corresponding to this double root. As F decreases further,

the left part of the phase plane curve grows as well, i.e., the local max in Figure

2.13 moves above the horizontal axis giving two more points of intersection with the

x-axis. Phase plane curves for representative waves for F = 0.02, 0.018 and 0.0169

are shown in Figure 2.13 (a). The amplified area where new roots appear is presented

in Figure 2.13 (b). This left pair of roots gives rise to another traveling wave with

negative amplitude. Therefore, for values of the Froude number below the critical

one, i.e., F < 0.0323627, two traveling waves exist — one of elevation and one of

depression. Traveling waves corresponding to the above values of F are depicted

in Figure 2.14 (a) waves with positive amplitude and (b) with negative amplitude.

Notice that at still lower values of F , the distance between the two middle roots

decreases (see Figure 2.13 (b)) and at some value of F between 0.0169 and 0.01 these

roots coincide. This corresponds to merging of negative and positive traveling waves
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into one and we obtain what we term “combined” traveling waves as depicted in the

representative case when F = 0.01 of Figure 2.11 (b)). Figure 2.13 gives details of

the merging.
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Figure 2.11 α = 0.5, F = 0.01. (a) Phase plane curve; (b) two “combined”
traveling waves.
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2.6.2 Representative Solitary Waves

Equation (2.60) can be readily integrated. Profiles are taken to be symmetric about

the origin and it is enough to calculate the shape between trough and crest. For

definiteness the plus sign is taken for S ′, and it is convenient to use S as the variable

of integration and to compute the corresponding ξ. Consequently, all waves begin or

end at ξ = 0. Solutions are obtained by quadrature by finding the ξ corresponding to
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the appropriate value of S. The asymptotic result (2.66) provides evidence regarding

the existence of two solitary waves of equal speeds but different amplitudes. One

wave has positive amplitude (this is a wave of elevation) while the other has negative

amplitude (a wave of depression). It is easy to obtain values of A and c which produce

a set of elevation and depression waves and in what follows we present solutions for

the representative case

A = −0.1, c = 0.9. (2.94)

The main question we address is the dependence of the solitary wave shape on the

physical parameters F and α.
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Figure 2.15 Phase plane curves for solitary wave case: F = 1, α varies.

Figure 2.15 is a graph of the right-hand side of equation (2.62), (2.63) for a fixed

Froude number F = 1.0 and different Atwood ratios ranging from 0.9 to 0.3. A set of

elevation and depression solitary waves exist for α = 0.9, 0.8, 0.7, 0.6, 0.5. Note that

the wave amplitudes decrease with α as does the maximum wave slope. A transition

occurs between α = 0.5 and α = 0.45 when the left root coincides with the origin

and the left solitary wave disappears. For α = 0.45 only an elevation wave is present.

The last curve in Figure 2.15 has α = 0.3 and does not support any traveling waves

since S2
x < 0 for all S. Representative solitary waves are shown in Figures 2.16 (a)

and (b) for a range of α. For the choice of parameters (2.94) the amplitudes increase

as the Atwood ratio increases towards unity.
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Figure 2.16 F = 1, α varies. (a) Waves of elevation; (b) waves of depression.

The effects of Froude number are considered next. Figure 2.17 shows the phase

plane of (2.62) for a set of Froude numbers and fixed α = .5. The figure covers the
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range of 0.05 ≤ F ≤ 0.9 with the following picture emerging. At the smallest value

of F = 0.05 depicted, elevation and depression solitary waves coexist which almost

touch the lower and upper walls, respectively. As the Froude number increases, the

amplitudes of the left and right waves move away from the walls (See Figure 2.18

(a), (b) for left and right waves, respectively). This trend persists to higher values of

F > 1, until a smooth transition at a value of F between 1.09 and 1.1 when the left

wave disappears. In Figure 2.19 we follow the development of the interfacial traveling

waves at still higher values of the Froude number. For F = 1.125 and 1.15, right

waves are still present. At higher values of F only trivial solutions are possible - this

is seen in Figure 2.19 with the phase-plane curve moving below the S2
ξ = 0 axis and

so precluding a right wave. The last curve has F = 1.25 and is completely below the

axis, so now waves are possible.
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Figure 2.17 Phase plane curves for α = 0.5, 0 < F < 1.

2.7 Formation of an Infinite-Slope Singularities after a Finite Time in

the Absence of Surface Tension and the Atwood Ratio α = 0

The case when the Atwood ratio α = 0 corresponds to the homogeneous layer of fluid,

i.e., when both fluids have the same density. In the absence of surface tension, the

system of governing equations (2.36) and (2.37) is

St + 2(S2W −W )x = 0, (2.95)
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Wt + 2(SW 2)x = 0. (2.96)

The following initial conditions are taken to coincide with those of numerical

solutions presented later in Section 2.8:

S(x, 0) = ε sin x, W (x, 0) = 1− ε cos x, (2.97)

where ε > 0 is the amplitude of an initial perturbation. The parity of solutions S

and W for t > 0 remains the same as that for the initial conditions (2.97). This

choice is not necessary either for theoretical or computational analysis but makes the

presentation clearer.

Changing to t′ = 2t and then dropping prime ′ in t removes the coefficient 2

from the second terms of the above equations, i.e.
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St + (S2W −W )x = 0, (2.98)

Wt + (SW 2)x = 0. (2.99)

This 2× 2 system of conservation laws can be written in the matrix form as



S

W




t

+




2SW S2 − 1

W 2 2SW







S

W




x

=




0

0


 . (2.100)

The eigenvalues λ of the matrix A =




2SW S2 − 1

W 2 2SW


 can be found from the

characteristic equation

det(A−λI) =

∣∣∣∣∣∣
2SW − λ S2 − 1

W 2 2SW − λ

∣∣∣∣∣∣
= (2SW −λ)2−W 2(S2− 1) = 0.(2.101)

Since S2 − 1 is negative, it follows that (2SW − λ)2 − W 2(S2 − 1) > 0, so the

eigenvalues λ are complex and the system under consideration is elliptic. Since our

nonlinear 2×2 system of conservation laws (2.100) is not hyperbolic, we cannot apply

directly the theory of singularity formation developed by Lax [56]. If we extend the

dependent and independent variables into the complex plane in such a way that the

resulting system is a system of hyperbolic equations and then solve this system, at

least implicitly, by the method of characteristics and Riemann invariants, then we

obtain evidence of singularity formation for the system (2.100). We will investigate

whether characteristics (or families of characteristics) cross on the real axis. This

would imply, then, that a singularity is encountered by the physical solution on the

real axis. These ideas were originated and successfully applied by Moore [67, 69] when

he studied the singularity formation in vortex sheets. Here we adapt Moore’s analysis

to the present problem. We also use analytical results by Caflisch and Orellana [15, 16]

who also studied vortex sheet singularities. The method presented here follows the

ideas developed by Papageorgiou and Orellana in [71] where they studied analytically

and numerically the cylindrical jet breakup using 2×2 system of conservation laws in
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the complex plane. The material presented here also uses information from a private

communication with Dr. Orellana.

We proceed, then, by analytically extending S and W into the complex plane

through the change of variables

z = ix, η(z, t) = iS(x, t)

so that the independent variables t and z, as well as the dependent variables η(z, t)

and W (z, t) are real. Such a complexification now yields a hyperbolic system in the

new variables which we analyze next.

In the new variables, system (2.98), (2.99) is

ηt + 2ηWηz + (1 + η2)Wz = 0, (2.102)

Wt + W 2ηz + 2ηWWz = 0 (2.103)

or in the matrix form



η

W




t

+




2ηW 1 + η2

W 2 2ηW







η

W




z

=




0

0


 . (2.104)

The set of the initial conditions (2.97) transforms into the corresponding set of initial

conditions for η and W as

η(z, 0) = ε sinh z, (2.105)

W (z, 0) = 1− ε cosh z. (2.106)

It is seen that the new system has real eigenvalues and is therefore hyperbolic.

Denote the eigenvalues by

λ+ = 2ηW + W (η2 + 1)1/2, λ− = 2ηW −W (η2 + 1)1/2.

The Riemann invariants are the functionals of η and W , which are constant on the

characteristics corresponding to the two distinct eigenvalues. To construct them, as
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described in the paper by Lax [56], we need first to find the left eigenvectors. The

left eigenvectors corresponding to λ+ and λ−, respectively, are

~e t
+ = (W (η2 + 1)−1/2, 1) and ~e t

− = (−W (η2 + 1)−1/2, 1).

Let

Ã =




2ηW 1 + η2

W 2 2ηW


 .

Multiply equation (2.104) by the eigenvector ~e t
+ from the left (see, for example, [58]

for more details) and use the fact that ~e t
+Ã = λ+~e t

+. Factoring out ~e t
+ in the resulting

equation, we obtain

~e t
+







η

W




t

+ λ+




η

W




z


 = 0.

But this means that

~e t
+

d

dt




η

W


 = ~e t

+







η

W




t

+
dz

dt




η

W




z


 = 0,

where dz
dt

= λ+. Therefore, ~e t
+

d
dt




η

W


 = 0 along dz

dt
= λ+ or

~e t
+




dη
dt

dW
dt


 = 0 along

dz

dt
= λ+. (2.107)

Similarly, for the second eigenvalue λ−, we obtain

~e t
−




dη
dt

dW
dt


 = 0 along

dz

dt
= λ−. (2.108)

In component form, equation (2.107) can be written as

W (η2 + 1)−1/2dη

dt
+ 1 · dW

dt
= 0.

Separating variables in the above equation and integrating, we obtain

∫ dη

(η2 + 1)1/2
+

∫ dW

W
= const.
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Using the result

∫ dx√
a2 + x2

= sinh−1 x

a
+ C = ln(x +

√
a2 + x2) + C,

we obtain the first Riemann invariant, which we denote by

r(η, W ) = ln(η +
√

η2 + 1) + ln W = const along
dz+

dt
= W (2η +

√
η2 + 1).

Performing the above procedure with equation (2.108), we get the second Riemann

invariant

s(η,W ) = ln(η +
√

η2 + 1)− ln W = const along
dz−

dt
= W (2η −

√
η2 + 1).

The superscripts + and − are used to denote the characteristics z+ and z−,

respectively, due to their correspondence to the eigenvalues λ+ and λ−. We can

convince ourselves that the functionals r(η, W ) and s(η,W ) are indeed the Riemann

invariants. For that purpose, we have to check whether they are consistent with the

evolution equations (2.102) and (2.103).

Since the functionals r(η, W ) and s(η, W ) are constant along the respective

characteristics, we have

d

dt
r(η, W ) = 0 and

d

dt
s(η, W ) = 0.

Differentiation of r(η,W ) with respect to t yields

d

dt
r(η, W ) =

1

η +
√

η2 + 1

(
1 +

2η

2
√

η2 + 1

)
(ηz

dz

dt
+ ηt) +

1

W
(Wz

dz

dt
+ Wt)

=
1√

η2 + 1

(
ηzW (2η +

√
η2 + 1) + ηt

)
+

1

W
(WzW (2η +

√
η2 + 1) + Wt).

Therefore,

1√
η2 + 1

(
ηtW (2η +

√
η2 + 1) + ηt

)
+ Wz(2η +

√
η2 + 1) +

Wt

W
= 0. (2.109)

Similarly, differentiating s(η, W ) with respect to t, we obtain

1√
η2 + 1

(
ηtW (2η −

√
η2 + 1) + ηt

)
−Wz(2η −

√
η2 + 1)− Wt

W
= 0. (2.110)
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Addition of equations (2.109) and (2.110) gives

1√
η2 + 1

(4ηWηz + 2ηt) + 2Wz

√
η2 + 1 = 0.

Multiplying this equation by

√
η2+1

2
we obtain equation (2.102). If we subtract

equation (2.110) from equation (2.109) and then multiply the resulting equation by

W/2, we will get equation (2.103). Thus, the consistency of the Riemann invariants

with the system of conservation laws (2.102) and (2.103) is shown.

2.7.1 Asymptotic Calculation of Characteristics

The Riemann invariants r(η, W ) and s(η, W ) are not constant in time and considering

the initial conditions (2.105), (2.106), we observe that the system is strictly nonlinear.

Therefore, there is a possibility of singularity formation as we show next.

We assume that the initial perturbation is small, i.e., ε ¿ 1. Denote by (z0, 0)

an initial point in the (z, t) plane. Using the smallness of parameter ε, we approximate

two characteristics emanating from the initial point, correct to order ε2.

Initial conditions (2.105), (2.106) at the initial point (z0, 0) are

η(z0, 0) = ε sinh z0 =
ε

2
(ez0 − e−z0) = O(ε), (2.111)

W (z0, 0) = 1− ε cosh z0 = 1− ε

2
(ez0 + e−z0) = 1 + O(ε). (2.112)

Notice that since η is of order ε, we have

(1 + η2)1/2 =

(
1 +

ε2

4
(ez0 − e−z0)2

)1/2

= 1 +
ε2

8
(ez0 − e−z0)2 + O(ε4). (2.113)

First we approximate the characteristics near the initial point (z0, 0). Then with

the leading order expressions of characteristics we can find values of the Riemann

invariants r(η,W ) and s(η, W ). After that, we will be able to find approximations

to solutions η and W . Once we have them, we can get higher corrections for

characteristics.
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For the z+ characteristics, we have

dz+

dt
= W (2η +

√
η2 + 1) = [1 + O(ε)] · [2O(ε) + 1 + O(ε2)].

Therefore,

dz+

dt
= 1 + O(ε). (2.114)

Integrating (2.114) with respect to t and using the initial condition z+|t=0 = z0 we

obtain

z+ = z0 + t + O(ε), (2.115)

or

z0 = z+ − t + O(ε). (2.116)

On the other hand, the Riemann invariant r(η,W ) may be written as

r(η, W ) = ln(η +
√

η2 + 1) + ln W = ln
{
1 +

ε

2
(ez0 − e−z0) + O(ε2)

}

+ ln
{
1− ε

2
(ez0 + e−z0)

}
=

ε

2
(ez0 − e−z0)− ε

2
(ez0 + e−z0) + O(ε2)

= −ε e−z0 +O(ε2),

where we used the smallness of the parameter ε. Therefore,

r(η, W ) = ln(η +
√

η2 + 1) + ln W = −ε e−z0 +O(ε2). (2.117)

But on z+, we can express z0 in terms of z+ using relation (2.116). Then since

ε is small, we have

e−z0 = e−(z+−t+O(ε)) = e−(z+−t) +O(ε)

and (2.117) yields the following relation

ln(η +
√

η2 + 1) + ln W = −ε e−(z+−t) +O(ε2).
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Since for any z in the plane (z, t) there exists a characteristic z+ passing through the

point z, we can use z instead of z+ in the above equation, i.e.,

ln(η +
√

η2 + 1) + ln W = −ε e−(z−t) +O(ε2). (2.118)

We proceed in an analogous way with the characteristic z− and obtain

dz−

dt
= W (2η −

√
η2 + 1) = −1 + O(ε)

that upon integration with respect to t and use of the initial condition z+|t=0 = z0

gives

z− = −t + z0 + O(ε), (2.119)

or

z0 = z− + t + O(ε). (2.120)

Then the Riemann invariant s(η, W ) may be written as

s(η,W ) = ln(η +
√

η2 + 1)− ln W = ε ez0 +O(ε2).

Expressing z0 in terms of z− by using (2.120), we obtain

ln(η +
√

η2 + 1)− ln W = ε ez−+t +O(ε2),

where again we can replace z− with z since for any z in the plane, there exists a

characteristic z− passing through z. Hence we may write

ln(η +
√

η2 + 1)− ln W = ε ez+t +O(ε2). (2.121)

Adding equations (2.118) and (2.121) we get

ln(η +
√

η2 + 1) =
ε

2

[
ez+t− e−(z−t)

]
+ O(ε2).
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Since ln(η +
√

η2 + 1) = sinh−1 η, we can write

η = sinh
{

ε

2

[
ez+t− e−(z−t)

]
+ O(ε2)

}
.

The argument of sinh in the above expression is of order ε, therefore, to the leading

order

η =
ε

2

[
ez+t− e−(z−t)

]
+ O(ε2).

Subtraction of equation (2.121) from (2.118) yields

ln W = −ε

2

[
e−(z−t) + ez+t

]
+ O(ε2)

or

W = exp
{
−ε

2

[
e−(z−t) + ez+t

]
+ O(ε2)

}

and to the leading order

W = 1− ε

2

[
e−(z−t) + ez+t

]
+ O(ε2).

Now as we have expressions for η and W , we can update the characteristics z+ and

z−.

dz+

dt
=

[
1− ε

2

{
e−(z−t) + ez+t

}
+ O(ε2)

]
·
[
1 + ε

{
ez+t− e−(z−t)

}
+ O(ε2)

]
.

Hence

dz+

dt
= 1 + ε

{
1

2
ez+t−3

2
e−(z−t)

}
+ O(ε2).

But on the characteristic z+, we can express z in terms of z0 using relation (2.115)

and write

dz+

dt
= 1 + ε

[
1

2
exp

{
2t + z0 + εt

(
1

2
ez0 −3

2
e−z0

)
+ O(ε2)

}
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−3

2
exp

{
−

(
z0 + εt

{
1

2
ez0 −3

2
e−z0

})
+ O(ε2)

}]

= 1 + ε
[
1

2
e2t ez0

{
1 + εt

(
1

2
ez0 −3

2
e−z0

)
+ O(ε2)

}

−3

2
e−z0

{
1− εt

(
1

2
ez0 −3

2
e−z0

)
+ O(ε2)

}]
+ O(ε2).

Therefore,

dz+

dt
= 1 + ε

[
1

2
e2t ez0 −3

2
e−z0

]
+ O(ε2). (2.122)

Integrating equation (2.122) with respect to t and using z+|t=0 = z0, we obtain

z+ = z0 + t + ε
[
1

4
ez0(e2t−1)− 3

2
t e−z0

]
+ O(ε2).

Note that the condition z+|t=0 = z0 implies that the zero order constant of integration

being z0 while at the order ε we get −1
4
ez0 .

Similarly, for characteristic z− we have

dz−

dt
= −1 + ε

{
3

2
ez+t−1

2
e−(z−t)

}
+ O(ε2).

Replacing z in the above expression with (2.119) gives

dz−

dt
= −1 + ε

[
3

2
ez0 −1

2
e−z0 e2t

]
+ O(ε2).

Integration with respect to t yields

z− = −t + z0 + ε
[
3

2
t ez0 −1

4
e−z0(e2t−1)

]
+ O(ε2). (2.123)

Proposition 1 The following statement is true:

z+(z0) = −z−(−z0) + O(ε2).
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Proof. Indeed, if we change z0 to −z0 into characteristic z− written in (2.123),

we obtain the following

z−(−z0) = −t− z0 + ε
[
3

2
t e−z0 −1

4
ez0(e2t−1)

]
+ O(ε2)

= −
{
t + z0 − ε

[
3

2
t e−z0 −1

4
ez0(e2t−1)

]
+ O(ε2)

}
= −z+(z0).

The symmetry established in Proposition 1 allows one to consider crossing of

the z+ characteristics alone since critical times, i.e., times of the shock formation,

given by crossings of z− characteristics are identical.

Let us introduce the following notations (they play a similar role in the paper

by Papageorgiou and Orellana [71]).

f1(t) =
1

4
(e2t−1), f2(t) = −3

2
t. (2.124)

Then characteristics z+ and z− may be written as

z+ = z0 + t + εf1(t) ez0 +εf2(t) e−z0 +O(ε2). (2.125)

z− = z0 − t− εf2(t) ez0 −εf1(t) e−z0 +O(ε2). (2.126)

Note that f1(t) > 0 and f2(t) < 0 for t > 0.

2.7.2 Crossing of Any z+ Characteristics and Minimal Time when This

Happens

Consider two initial points (α1, 0) and (α2, 0) in the (z, t) plane where without loss of

generality we assume α1 > α2. We allow two z+ characteristics to cross and we would

like to find the minimum possible time when this happens. The z+ characteristics

emanating from these points cross after a time, correct to O(ε2), that may be found

from the following equation

α1 + t + εf1(t) eα1 +εf2(t) e−α1 = α2 + t + εf1(t) eα2 +εf2(t) e−α2
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or after cancelling t

α1 + εf1(t) eα1 +εf2(t) e−α1 = α2 + εf1(t) eα2 +εf2(t) e−α2 . (2.127)

Denote by tc the minimum possible time over pairs (α1, α2). Equation (2.127) may

be regarded as the equation for the function t = t(α1, α2). The necessary condition

of an extremum for the function t(α1, α2) is that its partial derivatives ∂t
∂α1

and ∂t
∂α1

have to be zero. Differentiate equation (2.127) with respect to α1 first to get

1 + εf1(tc) eα1 +ε
∂f1(tc)

∂α1

eα1 −εf2(tc) e−α1 +ε
∂f2(tc)

∂α1

e−α1

= ε
∂f1(tc)

∂α1

eα2 +ε
∂f2(tc)

∂α1

e−α2 . (2.128)

But

∂f1(tc)

∂α1

=
1

2
e2tc

∂t

∂α1

and
∂f2(tc)

∂α1

= −3

2

∂t

∂α1

and setting ∂t
∂α1

= 0 in (2.128) we obtain

1 + εf1(tc) eα1 −εf2(tc) e−α1 = 0. (2.129)

Similarly, if we differentiate equation (2.127) with respect to α2 and then set ∂t
∂α2

to

be zero in the resulting equation, we get an equation exactly the same as (2.129) but

with α2, i.e.

1 + εf1(tc) eα2 −εf2(tc) e−α2 = 0. (2.130)

Since equations (2.129) and (2.130) are of the same type, they may be written

simultaneously as

1 + εf1(tc) eα1,2 −εf2(tc) e−α1,2 = 0. (2.131)

If we multiply the above equation by eα1,2 , then the resulting equation is

quadratic with respect to eα1,2 . The possible roots are

eα1 =
−1 +

√
1 + 4ε2f1(tc)f2(tc)

2εf1(tc)
,
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eα2 =
−1−

√
1 + 4ε2f1(tc)f2(tc)

2εf1(tc)
.

Note that the expression under the square root sign is less than one for all t > 0,

therefore, the right-hand side is negative for both roots eα1,2 for all t > 0. Hence, there

are no real solutions which implies in turn that z+ characteristics emanating from

different initial points do not cross. However, we can show that at least to order ε2

these characteristics may become tangent after some time. Two characteristics z+ are

tangent when ∂z+

∂z0
= 0 which gives the equation of an envelope of the one parameter

family of characteristics z+. This envelope is the curve along which singularities

propagate.

2.7.3 Envelopes of Characteristics

As was mentioned in the previous subsection, the equation of the envelope of the

characteristics is ∂z+

∂z0
= 0. Differentiating equation (2.125) with respect to z0, we get

∂z+

∂z0

= 1 + εf1(tc) ez0 −εf2(tc) e−z0 +O(ε2) = 0

that implies

εf1(tc) e2z0 + ez0 −εf2(tc) = 0.

This is the same type of equation as in (2.131). The roots are

ez0 =
−1 +

√
1 + 4ε2f1(tc)f2(tc)

2εf1(tc)
= eα1

and

ez0 =
−1−

√
1 + 4ε2f1(tc)f2(tc)

2εf1(tc)
= eα2 .

We first use the root eα1 in the equation of characteristics z+ (2.125).

z+ = ln


−1 +

√
1 + 4ε2f1(tc)f2(tc)

2εf1(tc)


 + tc + εf1(tc)

−1 +
√

1 + 4ε2f1(tc)f2(tc)

2εf1(tc)
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+ εf2(tc)
2εf1(tc)

−1 +
√

1 + 4ε2f1(tc)f2(tc)
+ O(ε2)

= ln

[−1 + 1 + 2ε2f1(tc)f2(tc) + O(ε4)

2εf1(tc)

]
+ tc + εf1(tc)

∗ −1 + 1 + 2ε2f1(tc)f2(tc) + O(ε4)

2εf1(tc)
+

2ε2f1(tc)f2(tc)

−1 + 1 + 2ε2f1(tc)f2(tc) + O(ε4)

+ O(ε2) = ln(2εf2(tc)) + tc + 1 + O(ε2).

Therefore,

z+ = ln(2εf2(tc)) + tc + 1 + O(ε2) (2.132)

is the equation of the envelope of the family of z+ characteristics. Setting z+ = 0

gives the critical time tc when the envelope reaches the real axis,

ln(2εf2(tc)) = −(tc + 1),

hence solving for ε we obtain

ε =
1

2f2(tc)
e−(tc+1) .

We observe that in order for the right-hand side to be of order ε, time tc has to be

large. Taking ln of both sides, we get

ln ε = −(tc + 1)− ln(2f2(tc))

but f2(tc) = −3
2
tc, therefore,

ln ε = −(tc + 1)− ln(−3tc).

For large tc, the dominant term in the right hand side of the above equation is −tc (the

term ln(−3tc) is of order ln tc and therefore, for large tc this term can be neglected).

Therefore, to the leading order

ln ε = −tc,
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whence we obtain the value for the critical time tc to the leading order as ε → 0, i.e.

tc = ln
1

ε
+ O(ε2). (2.133)

The use of the other root eα2 gives the same estimate of the critical time tc.

Indeed, substituting eα2 into z+ and using the smallness of ε, we obtain

z+ = ln


−1−

√
1 + 4ε2f1(tc)f2(tc)

2εf1(tc)


 + tc + εf1(tc)

−1−
√

1 + 4ε2f1(tc)f2(tc)

2εf1(tc)

+ εf2(tc)
2εf1(tc)

−1−
√

1 + 4ε2f1(tc)f2(tc)
+ O(ε2)

= ln

[
− 1

εf1(tc)
+ O(ε)

]
+ tc − 1 + O(ε2).

Equating z0 to zero yields

ln
1

ε
+ ln

(
− 4

e2tc −1

)
+ tc − 1 = 0

or

ln
1

ε
+ ln(−4)− 2tc − ln(1− e−2tc) + tc − 1 = 0.

Ignoring lower order terms for large tc, we obtain

tc ∼ ln
1

ε
,

same as in (2.133).

2.7.4 Comparison of Singular Times between Theory and Numerics

The theory presented in the previous subsection can be used to estimate singular times

once ε is given. In what follows we compare singular times obtained by numerical

solution of the evolution equations (2.98), (2.99) and analytical prediction of the

singular time given in (2.133). The numerical method described in Subsection 2.8.1
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was used to obtain solutions of the governing equations. Computations were stopped

when the maximum value of Sx or Wx reached a value of 10. The time when this

happens is defined to be the critical time (or the singular time) tc. Solutions were

obtained for representative values of ε in the range 0.0001 ≤ ε ≤ 0.1. As the numerical

experiments show, the solution appears to develop an infinite-slope singularity both in

the interface S and vortex sheet strength W . As opposed to the Subsection 2.8.2 where

a relatively large initial perturbation ε = 0.3 was used and the vortex sheet strength

W had the slope growing faster then the slope in the interface S, for smaller values

of ε < 0.1, the function S develops the singularity faster than W . The experiment

shows that a fixed time-step t = 10−5 and n = 512 points were enough to produce

numerical solutions, at least with graphical accuracy (in the next section we will need

to use up to n = 4096 points as well as adjustable decreasing time step in order to

achieve the maximum slopes in Sx or Wx being set to 50).

The evidence of the finite-time singularities may also be obtained by numerical

evaluation of the analytical prediction of the critical times from (2.133). In Figure

2.20 we compare the critical times obtained by numerical solution of the evolution

equations (2.98), (2.99) as was described above (solid line) and critical times

calculated by using (2.133) (open circles). We plot critical times, tc, versus initial

amplitude ε. As it can be seen, the agreement is not very good, but the analytical

prediction shows only the leading order behavior of tc as the initial perturbation ε

tends to 0.

In the paper by Papageorgiou and Orellana [71], the correction to the singular

time tc of the order ln(ln 1
ε
) is given. Even though, the problem of cylindrical

jet breakup studied in that article is different, we observe some similarity with

our problem in the system of conservation laws and analytical construction of the

characteristics. In addition, when we obtained the leading order estimate of the

critical time tc, we ignored terms of order ln tc. This suggests that we also have in
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Figure 2.20 Comparison of singular times between theory and numerics.

our problem a correction term A · ln(ln 1
ε
) where A is a constant. We empirically

determine A = 1.2 as described below. Of course, more strict theoretical analysis is

needed to justify such a correction term, but we are going to find this constant A by

numerically fitting the difference between the numerical and analytical critical times

presented on Figure 2.20.
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Figure 2.21 Numerical constant fitting in O(ln(ln 1
ε
)) term.

Figure 2.21 contains the graph of the difference of the numerical critical times

and analytical ones divided by ln(ln 1
ε
) versus ε. As it is seen from the graph, we can
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use A = 1.0 or A = 1.2. The latter choice produces the better correction term in tc.

Therefore, the estimation for the critical time is

tc ≈ ln
1

ε
+ (1.2) ln

(
ln

1

ε

)
. (2.134)

The comparison of singular solutions obtained by numerical solution of the

evolution equations with the corrected estimate of tc in (2.134) is presented in Figure

2.22. The agreement is found to be very good.
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Figure 2.22 Comparison of singular times between corrected theoretical estimate
and numerics.

Remark. For the case of α 6= 0, i.e., when we have two immiscible fluids of

different densities, the system of governing equations has regions where it is elliptic

and where it is hyperbolic depending on values of the interface S and vortex sheet

strength W . It would be possible to start from the initial condition of one type,

let us say, elliptic, and then with time evolution to get a solution of the other type,

hyperbolic. However, if the initial perturbation is small enough, following Lax’ theory,

[56] the solution will preserve its type with time. The analysis of this case is the

subject of future work.
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2.8 Numerical Solution of Evolution Equations

2.8.1 Numerical Method

In this section we solve the initial value problem (2.36) and (2.37) numerically. It

follows from the linear stability results of Section 2.4 that the regularization of the

system at high wavenumbers can at best be dispersive and is provided by surface

tension. Physically this arises from the conservative nature of the governing equations

We choose to solve (2.36), (2.37) subject to periodic boundary conditions

S(x + 2π, t) = S(x, t), W (x + 2π, t) = W (x, t).

A pseudo-spectral scheme with time integration performed in Fourier space is used.

This scheme is based on the ideas of Fornberg and Whitham (1978) [32] developed for

the KdV equation. In view of the third derivative term in (2.37), a rough accuracy

criterion is k3
maxdt < 1 where dt is the time step. Such a criterion is quite severe in

view of the fact that twenty fast fourier transforms (FFT’s) per time-step are needed

for a four level scheme, for example.

Using S and W as dependent variables in (2.36) and (2.37) implies that equation

(2.37) will have the term with Sxxx, the highest derivative of S, present nonlinearly.

We introduce a new dependent variable

Q = (1− αS)W, (2.135)

and rewrite the evolution equations (2.36) and (2.37) as

St =
2

(1− αS)2

[
(1− αS)(1− S2)Qx + (αS2 − 2S + α)QSx

]
, (2.136)

Qt =
α

F
Sx − γSxxx +

2Q

(1− αS)3

[
(α2 − 1)QSx

+ (1− αS)Qx(αS2 − 2S + α)
]
. (2.137)

This form of evolution equations is used for numerical solution of the initial value

problem.
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The case of equal densities (α = 0) can be implemented efficiently by the split

time-step scheme since in this case it is possible to split the linear and nonlinear

operators and treat them separately.

We use a pseudo-spectral scheme (see also Fornberg and Whitham (1978) [32],

Papageorgiou and Smith (1988) [72]). Time marching is done by a fourth order

Runge-Kutta method.

Computational accuracy is checked throughout the evolution by monitoring

the three conserved quantities we found. These are the total energy of the system,

equation (2.46), and the integrals
∫ 2π

0
Sdx and

∫ 2π

0
(W − αSW )dx =

∫ 2π

0
Qdx.

which follow directly from (2.36), (2.37). For the computations reported here the

error in the constancy of these quantities was of the order of machine precision (double

precision is used throughout). If the accuracy criteria associated with the dispersive

regularization of the equations are violated, however, the conserved quantities drift

slightly and the error builds up as time increases. The conclusion after many

numerical experiments is that 512 modes at early times and then up to 2048 or

even 4096 modes at later times close to the time of any singularities, and provide an

optimal spatial discretization in view of the time-step restrictions, and for the values

of the surface tension coefficient studied here.

2.8.2 Computational Results

The initial conditions used are

S(t = 0, x) = a sin(x), W (t = 0, x) = W0 − a cos(x)

with the corresponding initial value of Q(t, x). Here a, |a| < 1, is the amplitude of

the perturbation, W0 is initial vortex sheet strength and the range of x is (0, 2π).

These conditions represent a sinusoidal initial perturbation to a flat vortex sheet of

strength W0.
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Numerical solutions presented in this subsection have the following parameters

fixed

α = 0, F = 1.0, W0 = 1.0, a = 0.3.

The value α = 0 models the situation of both fluids having the same density. The

following set of results examines the effect of the surface tension γ on the interfacial

evolution and corresponding vortex sheet strength.

The initial condition for the interface is an odd function of x whereas that for

the vortex sheet strength is even. On the graphs, the symmetry is about x = π.

Equations preserve this symmetry during the course of evolution. The parity of

numerical solutions is preserved as well.

Calculations were run until the maximum of the absolute values of Sx and Qx

reached a preset value of 50. It is found numerically (see below) that a finite-time

singularity is encountered. The time of the singularity is denoted by tc. It is observed

that the Wx (the derivative of the vortex sheet strength) is more singular than Sx as

t → tc− for the initial perturbation of amplitude a = 0.3 reported here.

The results presented in this section have some similarity with those obtained

by Siegel [84] where the author studied singularity formation in the Kelvin-Helmholtz

instability with surface tension.

Case γ = 0. The initial condition for the vortex sheet strength has a single local

maximum at x = π. As time evolves the slope of the vortex sheet in the vicinity of

this maximum point grows (the value of the maximum remains bounded) developing

a cusp singularity at the critical time tc. The vortex sheet strength at x = π at the

critical time is 2.5. The interface exhibits bounded growth with time and develops

an infinite slope at the critical time; the amplitude remains bounded and does not

exceed a value of 0.45. The final computed time is tf = 0.206991735.

The case of zero surface tension corresponds to kc → ∞ where kc is cut-off

number from the linearized theory investigated in Section 2.4.
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Figure 2.23 γ = 0, final time tf = 0.206991735. Evolution of: (a) interface S(x, t);
(b) vortex sheet strength W (x, t).

Theoretical analysis of the case with zero surface tension by using Riemann

invariants is done in Section 2.7. It is shown there that characteristics cross and

reach the real axis in finite time thus forming a singularity of the physical solution.

The slope of the interface is infinite at the critical time but its amplitude remains

finite and less then 1.

As surface tension assumes non-zero values, the situation changes. For some

range of parameters γ we observe the finite time singularity formation. This range of

γ corresponds to that when the system has at least one unstable mode that will grow

to form the singularity. See Section 2.4 and stability diagram 2.3 for more details.

Case γ = 0.01. The interface at the time close to critical forms two symmetric

corners located near the point of symmetry x = π. The amplitude does not exceed

.45. The vortex sheet strength curve narrows down around x = π but does not form

a cusp at this point. It still has one single local maximum. This value is 2.4 which is

slightly smaller than for γ = 0.0. The final computed time is tf = 0.22.

The number of linearly unstable modes kc can be calculated using formula (2.51).

For γ = 0.01, this number is kc = 28.
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Figure 2.24 γ = 0.01, final time tf = 0.22. Evolution of: (a) interface S(x, t); (b)
vortex sheet strength W (x, t).

Case γ = 0.1. The two humps (a local maximum to the left of x = π and local

minimum to the right) on the interface that were observed for the previous case grow

faster. As γ increases, they are more pronounced at times closer to t = tc. The

support of these humps is wider than for smaller value of γ. At later times the slope

of the interface connecting these humps gets bigger. The interfacial amplitude at the

final time reaches the value 0.8. The main difference for the vortex sheet is that now

it has two local maxima formed. Comparing with the previous case when γ = 0.01

where we observed only one local maximum, for the case of γ = 0.1 shows that at the

previous value of the surface tension, the support for the local maximum broadens as

γ increases and splits to give two local maxima. The vortex sheet strength reaches

the value 3.8 at the final computed time, tf = 0.26926337.

The critical wave number is kc = 8. Decreasing the critical wave number kc,

we decrease the number of unstable modes, and as a consequence, the singularity

formation delays.

Case γ = 1.0. Interface grows and reached the value 0.95 which is close to 1

that is close to the walls. The distance between two vorticity maxima increases and
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Figure 2.25 γ = 0.1, final time tf = 0.26926337. Evolution of: (a) interface S(x, t);
(b) vortex sheet strength W (x, t).

is about 0.7 at the critical time. These maxima have values 4.7. The final time is

tf = 0.40707. There are kc = 2 linearly unstable modes in this case.
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Figure 2.26 γ = 1.0, final time tf = 0.40707. Evolution of: (a) interface S(x, t);
(b) vortex sheet strength W (x, t).

Case γ = 3.0. The amplitude of the interface at the critical time is 0.96. The

corners are wider than in the previous case. They affect almost the whole solution.

The distance between vorticity maxima is about 1.2. Not only the distance with

vortex sheet strength increases, these peaks themselves become wider. The final time

is tf = 0.669217999. In this case, we have only one linearly unstable mode since

kc = 1 for γ = 3.0.
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Figure 2.27 γ = 3.0, final time tf = 0.669217999. Evolution of: (a) interface
S(x, t); (b) vortex sheet strength W (x, t).

Case γ = 5.0. The sides of the corners on the interface are almost straight lines.

The interface is very close to the walls. The amplitude is around 0.99. The vortex

sheet strength has maxima vorticity peaks at the distance is about 2.0. The final

time is tf = 1.244447. We still have only one linearly unstable mode, i.e. kc = 1.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

S

Evolution of vortex sheet S(x,t), W
0
=1, σ=5, t

final
=1.244447

t=0
t=0.4
t=0.8
t=1.0
t=1.21
t=1.22
t=1.23
t=1.24
t=1.244447

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x

W

Evolution of vortex sheet strength W(x,t), W
0
=1, σ=5, t

final
=1.244447

t=0
t=0.4
t=0.8
t=1.0
t=1.21
t=1.22
t=1.23
t=1.24
t=1.244447

Figure 2.28 γ = 5.0, final time tf = 1.244447. Evolution of: (a) interface S(x, t);
(b) vortex sheet strength W (x, t).

For values of γ from 0.1 to 5.0, the vortex sheet strength curve first becomes

dimple shaped. Then the lobes where vorticity has a maximum, narrow down and

grow with the slope growing as well. As γ increases, lobes get higher values and the

distance between these peaks increases as well. The slope of the vortex sheet strength
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at the final time reaches the final preset tolerance and the solution has a cusp type

shape. As γ increases but stays within the regime of unstable modes, the singularity

forms later in time.

In all cases, the value of W remains bounded.

Case γ = 13.0. In this case there are no unstable modes, so the solution for

both interface and vortex sheet strength just oscillate with time. The representative

numerical solutions are constructed for final time tf = 5.0.
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Figure 2.29 γ = 5.0, final time tf = 5.0. Evolution of: (a) interface S(x, t); (b)
vortex sheet strength W (x, t).



CHAPTER 3

THREE-DIMENSIONAL NONLINEAR WATER WAVES PROBLEM

In this chapter we generalize the problem of the interfacial evolution of two fluids to

the three-dimensional case.

3.1 Formulation and Derivation of Governing Equations: Layers of

Different Thicknesses

We consider a system of two incompressible, inviscid and immiscible fluids which are

bounded between two parallel infinite plates. Denote the upper and lower fluids by

subscripts 1 and 2, respectively. In dimensional variables, the height of the upper

and lower walls of the channel are h1 and h2, respectively. The densities are assumed

to be ρ1 and ρ2. Cartesian coordinates (x, y, z) will be used with the undisturbed

interface at z = 0. At later times, the deformed interface is given by the function

z = S(x, y, t). The geometry of the problem is given in Figure 3.1.

0

x

Geometry of the problem in 3D case

y

S
(x

,y
,t)

ρ
1
 

ρ
2
 

z=S(x,y,t) 

h
1
 

−h
2
 

Figure 3.1 Geometry of the problem in 3D case. Interface between two fluids.

Assuming the flow of each fluid away from the interface to be irrotational,

enables one to introduce the complex potential φi, i = 1, 2, for the upper and lower

76
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fluids. The evolution equations are the following (see Appendix A for derivation

details).

(∆ + ∂zz) φi = 0, i = 1, 2, (3.1)

φ1z = 0 at z = h1, (3.2)

φ2z = 0 at z = −h2, (3.3)

φ1z = St + (∇φ1 · ∇S) on z = S+(~x, t), (3.4)

φ2z = St + (∇φ2 · ∇S) on z = S−(~x, t), (3.5)

ρ1 [φ1t +
1

2
(∆ + ∂zz) φ1 + gz

]
− ρ2

[
φ2t +

1

2
(∆ + ∂zz) φ2 + gz

]

= − σ0

[1 + S2
x + S2

y ]
3/2

(
Sxx + S2

ySxx + Syy + S2
xSyy − 2SxSySxy

)
. (3.6)

The approximations and physical assumptions made in deducing evolution

equations become clear once the problem is non-dimensionalized. The long wave

analysis is based on the smallness of the ratio of upper layer channel height h1

(note that we assume h1 ∼ h2) to a typical wavelength of the interface. Let l be

a typical wavelength and c0 a typical wavespeed. Non-dimensional variables with the

superscript ∗ are introduced as follows

x∗ =
x

l
, y∗ =

y

l
, z∗ =

z

h1

, t∗ =
c0

2l
t, S∗ =

S

h1

,

φ∗i =
1

c0l
φi, p∗i =

2

ρ2c2
0

pi, i = 1, 2. (3.7)

Changing to dimensionless variables and dropping ∗, the governing equations become

ε2∆φ1 + φ1zz = 0, S < z < 1, (3.8)

ε2∆φ2 + φ2zz = 0, −D < z < S, (3.9)

φ1z = 0 on z = 1, (3.10)
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φ2z = 0 on z = −D, (3.11)

ε2
(

1

2
St +∇φi · ∇S

)
= φiz on z = S(x, y, t), i = 1, 2, (3.12)

ρ [φ1t + (φ1x)
2 +

(
φ1y

)2
+

1

ε2
(φ1z)

2 +
1

F
S

]

−
[
φ2t + (φ2x)

2 +
(
φ2y

)2
+

1

ε2
(φ2z)

2 +
1

F
S

]

= −εσ̃

{
Sxx + Syy + ε2

[
S2

xSyy + S2
ySxx

]}

[1 + ε2(S2
x + S2

y)]
3/2

on z = S. (3.13)

The parameters appearing above are the depth ratio D, the upper layer thickness

to wavelength ratio ε, the upper to lower fluid density ratio ρ, the dimensionless

surface tension coefficient σ̃ and the Froude number F of the flow based on the

upper layer thickness, the latter being the ratio of the typical speed to the speed of

small-amplitude surface waves in shallow water:

D =
h1

h2

, ε =
h1

l
, ρ =

ρ1

ρ2

, σ̃ =
2σ0

lc2
0ρ2

, F =
c2
0

2gh1

. (3.14)

In what follows canonical evolution equations are derived that describe the

dynamics in the asymptotic limit ε → 0. It is desirable to retain both gravity and

surface tension forces in the canonical equations, which can then be used to analyze

individual limits corresponding to different physical situations. Since the curvature of

the interface is “small” in dimensional terms, it is not surprising to find that strong

surface tension is required to make capillary effects comparable to those of gravity.

From the equations above it is seen that the scaling

σ̃ =
σ

ε

is required with σ an order one parameter. Multiply both sides of the Bernoulli

equation (3.13) by ε2 and use the parameter σ as the dimensionless surface tension
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coefficient to obtain the equation

ρε2 [φ1t + (φ1x)
2 +

(
φ1y

)2
+

1

ε2
(φ1z)

2 +
1

F
S

]

− ε2
[
φ2t + (φ2x)

2 +
(
φ2y

)2
+

1

ε2
(φ2z)

2 +
1

F
S

]

= −
σε2

{
Sxx + Syy + ε2

[
S2

xSyy + S2
ySxx

]}

[1 + ε2(S2
x + S2

y)]
3/2

on z = S. (3.15)

The problem stated above is exact and results from the chosen non-

dimensionalization, for example, setting ε = 1, (3.8)–(3.12), (3.15) are the equations

for a non-slender two fluid-system. In what follows we study nonlinear solutions valid

in the limit ε → 0.

In the limit ε → 0, the only small parameter appearing in the governing

equations (3.8)–(3.12), (3.15) is ε2, and we assume the following asymptotic

expansions

S = S(0)+ε2S(1)+ε4S(2)+. . . , φi = φ
(0)
i +ε2φ

(1)
i +ε4φ

(2)
i +. . . , i = 1, 2.(3.16)

At leading order, we have the following problem

φ
(0)
1 zz

= 0, S(0) < z < 1, (3.17)

φ
(0)
2 zz

= 0, −D < z < S(0), (3.18)

φ
(0)
1 z

= 0 on z = 1 and z = S(0), (3.19)

φ
(0)
2 z

= 0 on z = −D and z = S(0), (3.20)

ρ
(
φ

(0)
1 z

)2 −
(
φ

(0)
2 z

)2
= 0 on z = S(0).

As we see from the last equation, the Bernoulli equation is satisfied automatically at

order ε0. Since φ
(0)
1 zz

= 0 by (3.17), it follows that φ
(0)
1 z

= f(x, y, t) where f(x, y, t) is

some function of integration. But φ
(0)
1 z

= 0 on z = 1 from (3.19). Hence f(x, y, t) ≡ 0.

Therefore φ
(0)
1 z
≡ 0 and φ1 does not depend on z. Denote it by

φ
(0)
1 ≡ Φ1(x, y, t). (3.21)
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Similarly, we deduce that φ2 also does not depend on z, and we call this function

φ
(0)
2 ≡ Φ2(x, y, t). (3.22)

At the next order, we have

φ
(1)
1 zz

= −∆φ
(0)
1 , S(0) < z < 1, (3.23)

φ
(1)
2 zz

= −∆φ
(0)
2 , −D < z < S(0), (3.24)

φ
(1)
1 z

= 0 on z = 1, (3.25)

φ
(1)
2 z

= 0 on z = −D, (3.26)

φ
(1)
i z

=
1

2
S

(0)
t +∇φ

(0)
i · ∇S(0) on z = S(0), i = 1, 2, (3.27)

ρ
[
φ

(0)
1 t

+
(
φ

(0)
1 x

)2
+

(
φ

(0)
1 y

)2
+

1

F
S(0)

]
−

[
φ

(0)
2 t

+
(
φ

(0)
2 x

)2
+

(
φ

(0)
2 y

)2
+

1

F
S(0)

]
= −σ

(
S(0)

xx + S(0)
yy

)
. (3.28)

The problem above has the following compatibility conditions

1

2
S

(0)
t +∇φ

(0)
1 · ∇S(0) = −(S(0) − 1)∆φ

(0)
1 on z = S(0)(x, y, t) (3.29)

and

1

2
S

(0)
t +∇φ

(0)
2 · ∇S(0) = −(S(0) + D)∆φ

(0)
2 on z = S(0)(x, y, t). (3.30)

The above conditions may be obtained as follows. Integration of equation (3.23) gives

φ
(1)
1 z

= −z∆φ
(0)
1 + B1(x, y, t), since ∆φ

(0)
1 is a function of x, y and t alone. At z = 1,

φ
(1)
1 z

= 0 from equation (3.25), and so B1(x, y, t) = ∆φ
(0)
1 . Hence φ

(1)
1 z

= −(z−1)∆φ
(0)
1 .

Similarly we obtain that φ
(1)
2 z

= −(z + D)∆φ
(0)
2 .

Substitute these expressions for φ
(1)
1 z

and φ
(1)
2 z

into equations (3.27) for i = 1 and

i = 2, respectively, to obtain

1

2
S

(0)
t + φ

(0)
1 x

S(0)
x + φ

(0)
1 y

S(0)
y = −(S(0) − 1)∆φ

(0)
1 on z = S(0), (3.31)
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1

2
S

(0)
t + φ

(0)
2 x

S(0)
x + φ

(0)
2 y

S(0)
y = −(S(0) + D)∆φ

(0)
2 on z = S(0), (3.32)

as given earlier. Equations (3.31) and (3.32) may be written in the shorter form

1

2
S

(0)
t +∇

{
∇φ

(0)
1 (S(0) − 1)

}
= 0 on z = S(0),

1

2
S

(0)
t +∇

{
∇φ

(0)
2 (S(0) + D)

}
= 0 on z = S(0).

Adding equations (3.31) and (3.32) gives

S
(0)
t +

(
S(0)(φ

(0)
1 + φ

(0)
2 )x

)
x

+
(
S(0)(φ

(0)
1 + φ

(0)
2 )y

)
y
+ D∆φ

(0)
2 −∆φ

(0)
1 = 0, (3.33)

while subtraction of equations (3.31) and (3.32) yields

(
S(0)(φ

(0)
1 − φ

(0)
2 )x

)
x

+
(
S(0)(φ

(0)
1 − φ

(0)
2 )y

)
y

= ∆φ
(0)
1 + D∆φ

(0)
2 . (3.34)

Equation (3.34) is crucial in the reduction of dependent variables as we discuss next.

3.2 Layers of the Equal Thicknesses

When the undisturbed upper and lower fluid thicknesses are equal (h1 = h2, i.e.,

D = 1) we can reduce the number of dependent variables as shown below. Let

Φ =
1

2
(φ

(0)
1 + φ

(0)
2 ), Λ =

1

2
(φ

(0)
1 − φ

(0)
2 ), (3.35)

so that φ
(0)
1 = Φ + Λ and φ

(0)
2 = Φ − Λ. Equations (3.28), (3.33) and (3.34) can be

written in terms of the functions S, Φ and Λ, where we denote S(0) by S

1

2
St + (SΦx)x + (SΦy)y −∆Λ = 0, (3.36)

(SΛx)x + (SΛy)y = ∆Φ, (3.37)

(ρ− 1)Φt + (ρ + 1)Λt + ρ(Φx + Λx)
2 + ρ(Φy + Λy)

2 − (Φx − Λx)
2

− (Φy − Λy)
2 +

ρ− 1

F
S = −σ∆S. (3.38)
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Introducing the Atwood ratio α = 1−ρ
1+ρ

and a scaled surface tension coefficient γ = σ
1+ρ

,

we can write equation (3.38) as

(Λ−αΦ)t− (αΦ2
x−2ΦxΛx +αΛ2

x)− (αΦ2
y−2ΦyΛy +αΛ2

y)−
α

F
S = −γ∆S.(3.39)

Equations (3.36) and (3.37) can be also rewritten in the shorter vector form

1

2
St +∇ · (S∇Φ)−∆Λ = 0, (3.40)

∇ · (S∇Λ) = ∆Φ. (3.41)

Integrating equation (3.41) gives S∇Λ = ∇Φ− ~χ(t), hence ∇Φ = S∇Λ + ~χ(t).

The vector χ(t) can be found by considering the unperturbed flow at large |x| and

|y|. Assuming that far away the interface is flat, gives limx→±∞ S(x, y, t) = 0 and

limy→±∞ S(x, y, t) = 0. The components of ∇Φ are the averages of the undisturbed

fluid velocities in the two layers in the x- and y-directions, respectively, and if the

fluids are at rest far away, it follows that ~χ(t) = ~0. The general case has ∇Φ 66= ~0

and thus ~χ may be a vector function of t. The case ~χ = ~const corresponds to a flow

having uniform inviscid stream components in the x- and y-directions, while any time

oscillatory far fields, for example, give rise to a time dependence. Eliminating ∇Φ

from equation (3.40) we obtain

St + 2∇ · (Sχ(t)) + 2∇ · (S2∇Λ) = 2∆Λ. (3.42)

Another vector equation is obtained by taking the gradient of (3.39) and eliminating

∇Φ:

([1− αS]∇Λ)t − α~χt + 2∇[(1− αS)∇Λ~χ]−∇([αS2 − 2S + α]∆Λ)

− α

F
∇S = −γ∇(∆S). (3.43)

If ~χ = ~const (corresponding to uniform flow at infinity), we can change to the inertial

frame

x → x− 2
∫ t

χ1(τ)dτ = x− 2χ1t, y → y − 2
∫ t

χ2(τ)dτ = y − 2χ2t, t → t
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and remove ~χ from the problem. This gives

S∇Λ = ∇Φ

or in component form

SΛx = Φx and SΛy = Φy. (3.44)

Equation (3.40) now becomes

1

2
St +∇ ·

(
(S2 − 1)∇Λ

)
= 0, (3.45)

and the Bernoulli equation (3.38) changes to

(ρ− 1)Φt + (ρ + 1)Λt + ρ(S + 1)2(Λ2
x + Λ2

y)− (S − 1)2(Λ2
x + Λ2

y)

+
ρ− 1

F
S = −σ∆S. (3.46)

Let

u = Λx, v = Λy, so ∇Λ = (Λx, Λy) = (u, v). (3.47)

Physically u and v are velocity jumps across the interface in the x and y directions,

respectively.

Differentiate equation (3.46) with respect to x to obtain

(ρ− 1)(Su)t + (ρ + 1)ut + ρ
{
(S + 1)2(u2 + v2)

}
x

−
{
(S − 1)2(u2 + v2)

}
x

+
ρ− 1

F
Sx = −σ∆Sx, (3.48)

while differentiation of equation (3.46) with respect to y gives

(ρ− 1)(Sv)t + (ρ + 1)vt + ρ
{
(S + 1)2(u2 + v2)

}
y

−
{
(S − 1)2(u2 + v2)

}
y
+

ρ− 1

F
Sy = −σ∆Sy. (3.49)

The system of equations (3.45), (3.48) and (3.49) provides the evolution of the

unknowns S, u and v, the interfacial shape and the velocity jumps across it in the x

and y directions, respectively.
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Introduce a vector ~q = ∇Λ = (u, v) with |~q|2 = u2 + v2. Then equations (3.45),

(3.48) and (3.49) can be written in the more compact form

1

2
St +∇ ·

[
(S2 − 1)~q

]
= 0, (3.50)

(ρ− 1)(S~q)t + (ρ + 1)~qt +∇
{[

ρ(S + 1)2 − (S − 1)2
]
|~q|2

}

+
ρ− 1

F
∇S = −σ∇(∆S). (3.51)

Using the notation of (3.47), we can rewrite equations (3.51), (3.50) as

St = −2
[
{u(S2 − 1)}x + {v(S2 − 1)}y

]
, (3.52)

(ρ− 1)(Su)t + (ρ + 1)ut +
ρ− 1

F
Sx +

[
(u2 + v2)

{
ρ(S + 1)2

− (S − 1)2
}]

x
= −σ(Sxx + Syy)x, (3.53)

(ρ− 1)(Sv)t + (ρ + 1)vt +
ρ− 1

F
Sy +

[
(u2 + v2)

{
ρ(S + 1)2

− (S − 1)2
}]

y
= −σ(Sxx + Syy)y. (3.54)

Substituting the expression for St from (3.52) into (3.53) and (3.54) we derive

the following system of equations given in form:

St = −2
[
(ux + vy)(S

2 − 1) + 2S(uSx + vSy)
]
, (3.55)

ut =
1

(ρ− 1)S + ρ + 1

{
2(ρ− 1)u[(ux + vy)(S

2 − 1) + 2S(uSx + vSy)]

− ρ− 1

F
Sx − 2(uux + vvx){ρ(S + 1)2 − (S − 1)2}

− 2(u2 + v2)Sx(ρ(S + 1)− (S − 1))− σ(Sxxx + Sxyy)
}
, (3.56)

vt =
1

(ρ− 1)S + ρ + 1
{2(ρ− 1)v[(ux + vy)(S

2 − 1) + 2S(uSx + vSy)]

− ρ− 1

F
Sy − 2(uuy + vvy){ρ(S + 1)2 − (S − 1)2}

− 2(u2 + v2)Sy(ρ(S + 1)− (S − 1))− σ(Sxxy + Syyy)}. (3.57)
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In terms of the Atwood ratio α defined by α = 1−ρ
1+ρ

and the scaled surface

tension γ = σ
1+ρ

, equations (3.56), (3.57) are finally written as

ut =
1

1− αS
{−2αu[(ux + vy)(S

2 − 1) + 2S(uSx + vSy)]

+
α

F
Sx − 2(uux + vvx)(−αS2 + 2S − α)

− 2(u2 + v2)Sx(1− αS)− γ(Sxxx + Sxyy)}, (3.58)

vt =
1

1− αS
{−2αv[(ux + vy)(S

2 − 1) + 2S(uSx + vSy)]

+
α

F
Sy − 2(uuy + vvy)(−αS2 + 2S − α)

− 2(u2 + v2)Sy(1− αS)− γ(Sxxy + Syyy)}. (3.59)

From equations (3.58) and (3.59), we observe that terms with highest derivative

of S, i.e. Sxxx, Sxxy, Sxyy, Syyy appear with nonlinear coefficients. Such terms can

cause problems in numerical calculations (i.e., time-step restrictions for stability). In

the present problem, the nonlinear coefficients of the highest derivatives of S can be

removed by introducing the new dependent variables U and V defined as follows.

U = (1− αS)u, V = (1− αS)v. (3.60)

The evolution system (3.55), (3.58) and (3.59) changes to

St =
2

(1− αS)2

[
(S2 − 1)(αS − 1)(Ux + Vy)

+ (αS2 − 2S + α)(SxU + SyV )
]
, (3.61)

Ut =
2

(1− αS)3

[
(α2 − 1)Sx(U

2 + V 2)

+ (αS2 − 2S + α)(1− αS)(UUx + V Vx)
]
+

α

F
Sx − γ(Sxxx + Sxyy), (3.62)

Vt =
2

(1− αS)3

[
(α2 − 1)Sy(U

2 + V 2)

+ (αS2 − 2S + α)(1− αS)(UUy + V Vy)
]
+

α

F
Sy − γ(Sxxy + Syyy). (3.63)

This form of equations is used in the numerical calculations described in Section 3.5.
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3.2.1 Special Cases: α = 0 and α = 1

We consider some special cases when the Atwood ratio is α = 0 or α = 1. The first

corresponds to the case when both fluids have the same density, whereas the second

it when the upper fluid is absent, i.e. has vanishing density.

Case α = 0: fluids of the same density

In this case, equations (3.51) and (3.50) can be written as

~qt +∇
{
2S|~q|2

}
= −σ

2
∇(∆S), (3.64)

1

2
St +∇.

[
(S2 − 1)~q

]
= 0, (3.65)

or in component form using equations (3.61)–(3.63)

St = −2
[
(S2 − 1)(Ux + Vy) + 2S(SxU + SyV )

]
, (3.66)

Ut = −2
[
Sx(U

2 + V 2) + 2S(UUx + V Vx)
]
− γ(Sxxx + Sxyy), (3.67)

Vt = −2
[
Sy(U

2 + V 2) + 2S(UUy + V Vy)
]
− γ(Sxxy + Syyy). (3.68)

Case α = 1: upper fluid is absent

For upper fluid having zero density, parameter ρ = 0 implies α = 1. In this

case, equations (3.61)–(3.63) become

St = 2 [(S + 1)(Ux + Vy) + (SxU + SyV )] , (3.69)

Ut = 2(UUx + V Vx) +
1

F
Sx − γ(Sxxx + Sxyy), (3.70)

Vt = 2(UUy + V Vy) +
1

F
Sy − γ(Sxxy + Syyy). (3.71)
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3.2.2 Problem in Polar Coordinates

In this section, we reformulate the system (3.45), (3.48) and (3.49) to polar

coordinates with the aim of considering interfacial waves which are axisymmetric.

Such disturbances could arise, for example, from a localized pressure disturbance at

a point.

Let ur(r, θ, t), uθ(r, θ, t) be components of the velocity vector in the r and θ

directions, respectively. The components u(x, y, t) and v(x, y, t) of velocity in the x

and y directions, respectively, can be written in terms of ur, uθ as follows

u = ur cos θ − uθ sin θ, v = ur sin θ + uθ cos θ.

The change of variables from the Cartesian system to the polar one is achieved by

the transformations

x = r cos θ, y = r sin θ with r2 = x2 + y2 and tan θ =
y

x
.

∂r

∂x
= cos θ,

∂r

∂y
= sin θ,

∂θ

∂x
= −sin θ

r
,

∂θ

∂y
=

cos θ

r
.

Partial derivatives transform according to

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
,

∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

Using these expressions we change variables in the Cartesian evolution equations

(3.45), (3.48) and (3.49) to obtain them in polar coordinates. Since ∇Λ = (Λx, Λy) =

(u, v), equation (3.45) becomes

1

2

∂S

∂t
+

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

) {
(S2 − 1)(ur cos θ − uθ sin θ)

}

+

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

) {
(S2 − 1)(ur sin θ + uθ cos θ)

}
= 0. (3.72)
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Equation (3.48) transforms to

[(ρ− 1)S + (ρ + 1)]t(ur cos θ − uθ sin θ) + [(ρ− 1)S + (ρ + 1)](ur cos θ

− uθ sin θ)t + ρ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

) {
(S + 1)2(u2

r + u2
θ)

}

−
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

) {
(S − 1)2(u2

r + u2
θ)

}

+
ρ− 1

F

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
S = −σ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
∆S.

This equation can be simplified further to

(ρ − 1)
∂S

∂t
(ur cos θ − uθ sin θ) + [(ρ− 1)S + (ρ + 1)]

(
∂ur

∂t
cos θ − ∂uθ

∂t
sin θ

)

+

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

) {
[ρ(S + 1)2 − (S − 1)2](u2

r + u2
θ)

}

+
ρ− 1

F

{
cos θ

∂S

∂r
− sin θ

r

∂S

∂θ

}
= −σ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
∆S. (3.73)

Similarly equation (3.49) transforms to

(ρ − 1)
∂S

∂t
(ur sin θ + uθ cos θ) + [(ρ− 1)S + (ρ + 1)]

(
∂ur

∂t
sin θ +

∂uθ

∂t
cos θ

)

+

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

) {
[ρ(S + 1)2 − (S − 1)2](u2

r + u2
θ)

}

+
ρ− 1

F

{
sin θ

∂S

∂r
+

cos θ

r

∂S

∂θ

}
= −σ

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
∆S. (3.74)

Inspection of equation (3.72) shows that it can be written in more useful

conservative form

1

2

∂S

∂t
+

∂

∂r

{
(S2 − 1)ur

}
+

1

r

∂

∂θ

{
(S2 − 1)uθ

}
= 0. (3.75)

Multiply equation (3.73) by cos θ, equation (3.74) by sin θ and then add the resulting

equations to obtain

(ρ − 1)
∂S

∂t
ur + [(ρ− 1)S + (ρ + 1)]

∂ur

∂t
+

∂

∂r

{
[ρ(S + 1)2

− (S − 1)2](u2
r + u2

θ)
}

+
ρ− 1

F

∂S

∂r
= −σ

∂

∂r
(∆S). (3.76)
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Multiplication of equation (3.74) by cos θ, equation (3.73) by sin θ and then

subtraction of the resulting equations gives

(ρ − 1)
∂S

∂t
uθ + [(ρ− 1)S + (ρ + 1)]

∂uθ

∂t
+

1

r

∂

∂θ

{
[ρ(S + 1)2

− (S − 1)2](u2
r + u2

θ)
}

+
ρ− 1

F

1

r

∂S

∂θ
= −σ

1

r

∂

∂θ
(∆S). (3.77)

In terms of the Atwood ratio α = 1−ρ
1+ρ

and γ = σ
1+ρ

, the system of evolution

equations becomes

1

2

∂S

∂t
+

∂

∂r

{
(S2 − 1)ur

}
+

1

r

∂

∂θ

{
(S2 − 1)uθ

}
= 0, (3.78)

α
∂S

∂t
ur + (αS − 1)

∂ur

∂t
+

∂

∂r

{
(αS2 − 2S + α)(u2

r + u2
θ)

}

+
α

F

∂S

∂r
= γ

∂

∂r
(∆S), (3.79)

α
∂S

∂t
uθ + (αS − 1)

∂uθ

∂t
+

1

r

∂

∂θ

{
(αS2 − 2S + α)(u2

r + u2
θ)

}

+
α

Fr

∂S

∂θ
= γ

1

r

∂

∂θ
(∆S). (3.80)

Note that St can be eliminated from (3.79), (3.80) by use of (3.78) as was done in the

Cartesian case.

3.2.3 Axisymmetric Case: ∂
∂θ

= 0

In the axisymmetric case, the system of equations (3.78)–(3.80) reduces to

1

2

∂S

∂t
+

∂

∂r

{
(S2 − 1)ur

}
= 0, (3.81)

α
∂S

∂t
ur + (αS − 1)

∂ur

∂t
+

∂

∂r

{
(αS2 − 2S + α)(u2

r + u2
θ)

}

+
α

F

∂S

∂r
= γ

∂

∂r
(∆S), (3.82)

α
∂S

∂t
uθ + (αS − 1)

∂uθ

∂t
= 0, (3.83)

where the operator ∆ ≡ ∂2

∂r2 + 1
r

∂
∂r

now.
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It follows from the last equation that

∂

∂t
[(αS − 1)uθ] = 0,

i.e., (αS−1)uθ does not depend on t, so (αS−1)uθ = G(r), where G is some function

of r. Equation (3.83) shows also that uθ ≡ const. yields trivial solutions since St = 0

then.

As a partial case, we can consider flows in which the component uθ = 0. Then

the system of three equations (3.81)–(3.83) reduces to two equations for the unknowns

S and ur.

1

2

∂S

∂t
+

∂

∂r

{
(S2 − 1)ur

}
= 0, (3.84)

α
∂S

∂t
ur + (αS − 1)

∂ur

∂t
+

∂

∂r

{
(αS2 − 2S + α)u2

r

}

+
α

F

∂S

∂r
= γ

∂

∂r

(
∂2S

∂r2
+

1

r

∂S

∂r

)
. (3.85)

Note that equation (3.83) in this particular case is satisfied identically.

When the densities are equal, α = 0, equation (3.85) simplifies, and we have

the following system of governing equations

1

2

∂S

∂t
+

∂

∂r

{
(S2 − 1)ur

}
= 0, (3.86)

∂ur

∂t
+ 2

∂

∂r

{
Su2

r

}
= −σ

2

∂

∂r

(
∂2S

∂r2
+

1

r

∂S

∂r

)
. (3.87)

3.3 Linear Stability Analysis

Consider next, the evolution of the infinitesimal wavy disturbances at the interface

according to the model (3.55), (3.58) and (3.59). The undisturbed flow is described

by a flat interface separating two fluids which flow at uniform velocities having

components in the x and y-directions with velocity jumps v0 and v0 across the
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interface, respectively. This undisturbed flow is a weak solution of the three-

dimensional Euler equations. The appropriate perturbations are

S(x, y, t) = δS̃ ei(k1x+k2y)+ω̂t, (u, v) = (u0, v0) + δ(ũ, ṽ) ei(k1x+k2y)+ω̂t . (3.88)

Here S̃, ũ, ṽ are constants and u0 and v0 are components of the constant strength

of the unperturbed vortex sheet in the x and y-directions, respectively, and δ is the

linearization parameter assumed to be infinitesimally small.

We substitute expressions (3.88) into equations (3.55), (3.58) and(3.59), and

multiply equations (3.58) and (3.59) by 1 − αS. After collecting terms of the order

O(δ), we obtain the following linear homogeneous system

S̃ω̂ = 2i(k1ũ + k2ṽ), (3.89)

ũω̂ = 2iαu0(k1ũ + k2ṽ) + 2iαk1(u0ũ + v0ṽ)

+ ik1S̃
[
α

F
− 2(u2

0 + v2
0) + γ(k2

1 + k2
2)

]
, (3.90)

ṽω̂ = 2iαv0(k1ũ + k2ṽ) + 2iαk2(u0ũ + v0ṽ)

+ ik2S̃
[
α

F
− 2(u2

0 + v2
0) + γ(k2

1 + k2
2)

]
. (3.91)

Define

Q =
α

F
− 2(u2

0 + v2
0) + γ(k2

1 + k2
2).

We need to eliminate S̃, ũ and ṽ in order to get a dispersion relation. It follows from

equation (3.89) that

S̃ =
2i

ω̂
(ũk1 + ṽk2). (3.92)

Substitute S̃ from (3.92) into (3.90) and (3.91). Equations (3.90) and (3.91) are linear

equations for the unknowns ũ and ṽ with the matrix

A =




ω̂ − 4iαk1u0 +
2k2

1

ω̂
Q −2iα(k2u0 + k1v0) + 2k1k2

ω̂
Q

−2iα(k1v0 + k2u0) + 2k1k2

ω̂
Q ω̂ − 4iαk2v0 +

2k2
2

ω̂
Q


 .
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For non-trivial solution (ũ, ṽ), we require det A = 0, i.e.,

det A = ω̂2 − 4iα(k1u0 + k2v0)ω̂ +
(
2(k2

1 + k2
2)Q

− 16α2k1k2u0v0 + 4α2(k1v0 + k2u0)
)

= 0, (3.93)

which is the quadratic equation for ω̂. Note that terms in det A = 0 of order O( 1
ω̂
)

and O( 1
ω̂2 ) cancel. The discriminant of equation(3.93) is

D = −16α2(k1u0 + k2v0)
2 − 4

(
2(k2

1 + k2
2)Q− 16α2k1k2u0v0

+4α2(k1v0 + k2u0)
2
)

= 8(k2
1 + k2

2)
[
−α

F
− γ(k2

1 + k2
2) + 2(1− α2)(u2

0 + v2
0)

]
.

Then, the dispersion relation is

ω̂ = 2iα(k1u0 + k2v0)±
√

2(k2
1 + k2

2)
1/2

[
−α

F
− γ(k2

1 + k2
2)

+ 2(1− α2)(u2
0 + v2

0)
]1/2

where k = (k2
1 + k2

2)
1/2 is called the total wave number. Instability occurs when the

real part of ω̂ is positive, i.e., when

−α

F
− γ(k2

1 + k2
2) + 2(1− α2)(u2

0 + v2
0) > 0.

This inequality is quadratic in α and can be written as

−2(u2
0 + v2

0)α
2 − α

F
+ 2(u2

0 + v2
0)− γ(k2

1 + k2
2) > 0. (3.94)

It is clear from (3.94) that for γ 6= 0, short waves (k1, k2 À 1) are linearly neutrally

stable. The discriminant for inequality (3.94) is

D1 =
1

F 2
+ 8(u2

0 + v2
0)

(
2(u2

0 + v2
0)− γ(k2

1 + k2
2)

)
.

If surface tension is absent, i.e. γ = 0, then

D1 = 16
(

1

16F 2
+ (u2

0 + v2
0)

)
> 0 for all values of F, u0 and v0
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and values for α are the following:

α1 =

1
F

+ 4
(

1
16F 2 + (u2

0 + v2
0)

2
)1/2

−4(u2
0 + v2

0)

= − 1

4F (u2
0 + v2

0)
−

(
1

16F 2(u2
0 + v2

0)
2 + 1

)1/2

,

α2 = − 1

4F (u2
0 + v2

0)
+

(
1

16F 2(u2
0 + v2

0)
2 + 1

)1/2

.

Clearly α1 < −1, and the admissible values of α are

−1 < α < α2. (3.95)

Condition (3.95) implies that flow is unstable for all negative values of α. This case

corresponds to that of a heavier fluid on the top. In addition, the range 0 ≤ α <

α2 is linearly unstable — surface tension acts to stabilize sufficiently short waves.

Representative graphs of the growth rate Re ω̂ for γ 6= 0 and γ = 0 are shown in

Figure 3.2.
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Figure 3.2 Representative graphs of growth rate Re ω̂ for α = 0.5, F = 1, 4, γ = 0.2
and γ = 0.
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3.4 Conserved Integrals

The system of the evolution equations (3.61)–(3.63) has the following constants

of motion that corresponds to mass, total circulation in the x- and y-direction,

respectively, and energy

I1 =
∫ ∫

Sdxdy, I2 =
∫ ∫

(1− αS)udxdy, I3 =
∫ ∫

(1− αS)vdxdy, (3.96)

I4 =
∫ ∫ [

1

2
(1− αS)(1− S2)(u2 + v2)− α

4F
(1− S2)

+
γ

4
(S2

x + S2
y)

]
dxdy. (3.97)

These constants of motion are analogues of the corresponding ones (2.39), (2.40) from

the two-dimensional problem considered in Chapter 2. Since these quantities do not

change during the course of the evolution, they have been used in monitoring the

accuracy during numerical calculations of the evolution equations (3.61)–(3.63).

Derivation of the integrals of motion (3.96), (3.97) is similar to that of their

two-dimensional analogues.

3.4.1 Mass Conservation

We use the dimensional notation of Section 3.1. We assume without loss of generality

that the flow is periodic with period l in the x- and y-directions. The total mass

contained in one periodic cell is

M = ρ1

∫ h

S

∫ l

0

∫ l

0
dxdydz + ρ2

∫ S

−h

∫ l

0

∫ l

0
dxdydz.

Changing to dimensionless variables by using (3.7) and then subsequently dropping

the superscript ∗, we obtain

M = ρ2lh

{
ρ1

ρ2

∫ 1

S

∫ 1

0

∫ 1

0
dxdydz +

∫ S

−1

∫ 1

0

∫ 1

0
dxdydz

}
.

Integration with respect to z and use of the density ratio ρ = ρ1

ρ2
yields

M = ρ2lh
∫ 1

0

∫ 1

0
{ρ(1− S) + (S + 1)} dxdy = ρ2lh

∫ 1

0

∫ 1

0
{(ρ + 1)
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+(1− ρ)S} dxdy = ρ2lh(1 + ρ)
∫ 1

0

∫ 1

0
(1 + αS)dxdy,

where we used the definition of the Atwood ratio α = 1−ρ
1−ρ

. Then the dimensionless

mass

M̃ =
M

ρ2lh
= (1 + ρ)

∫ 1

0

∫ 1

0
(1 + αS)dxdx

is the conserved density, i.e.,

∫ 1

0

∫ 1

0
S(x, y, t)dxdy = const1,

thus giving the constant of motion I1.

Note that we could also derive the conserved quantity I1 using the conservative

form of equation (3.50) and the periodicity of the boundary conditions.

3.4.2 Total Circulation Conservation

To derive the constants of motion I2 and I3, we observe that evolution equations

(3.61)–(3.63) or their vector equivalent in unknown functions u and v, i.e., equation

(3.50), may be written in the conservative form

[(1− αS)~q]t +∇
{
[−αS2 + 2S − α]|~q|2 − α

F
S + γ∇S

}
= 0

and we conclude that (1− αS)~q is the vector conserved density. Hence,

∫ 1

0

∫ 1

0
(1− αS)~qdxdy = ~const.

Recalling that ~q = (u, v), we obtain

∫ 1

0

∫ 1

0
(1− αS)udxdy = const2 and

∫ 1

0

∫ 1

0
(1− αS)vdxdy = const3.

But from (3.60) we have U = (1− αS)u and V = (1− αS)v. Therefore,

∫ 1

0

∫ 1

0
Udxdy = const2 and

∫ 1

0

∫ 1

0
V dxdy = const3.
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as desired. The quantities I2 and I3 are long wave analogues of the total circulation

in the x- and y-directions, respectively, as can be shown in a similar fashion as in

Section 2.3.2. Total circulation appears to be conserved due to the assumption that

the flows are irrotational.

3.4.3 Energy Conservation

The derivation of the energy integral is similar to the corresponding one for the

two-dimensional case. The dimensional notation of Section 3.1 is used to obtain the

total energy of the system at any time. The total energy has contributions from (i)

kinetic energy, (ii) potential energy due to density differences, (iii) interfacial energy

due to surface tension. Without loss of generality we take the flow to be periodic with

period l in the x- and y-directions. Then the total energy in a single square periodic

cell is

E =
1

2
ρ1

∫ h

S

∫ l

0

∫ l

0
((φ1x)

2 + (φ1y)
2 + φ1z)

2)dxdydz

+
1

2
ρ2

∫ S

−h

∫ l

0

∫ l

0
((φ2x)

2 + (φ2y)
2 + (φ2z)

2)dxdydz

+ ρ1g
∫ h

S

∫ l

0

∫ l

0
zdxdydz + ρ2g

∫ S

−h

∫ l

0

∫ l

0
zdxdydz

+ σ0

∫ l

0

∫ l

0
(1 + S2

x + S2
y)

1/2dxdy. (3.98)

Changing to dimensionless variables in (3.98) via (3.7) and subsequently dropping

superscript ∗ yields

E =
1

2
ρ

∫ 1

S

∫ 1

0

∫ 1

0
((φ1x)

2 + (φ1y)
2 +

1

ε2
(φ1z)

2)dxdydz

+
1

2

∫ S

−1

∫ 1

0

∫ 1

0
((φ2x)

2 + (φ2y)
2 +

1

ε2
(φ2z)

2)dxdydz

+
1

4F
(ρ− 1)

∫ 1

0

∫ 1

0
(1− S2)dx +

σ̃

2ε

∫ 1

0

∫ 1

0
(1 + ε2S2

x + ε2S2
y)

1/2dxdy.(3.99)

Expanding functions φ1, φ2 and S into power series in ε2 as was done in (3.16)

and using the solutions (3.21) and (3.22) of the leading order problem, we obtain the
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following functional

E =
1

2
ρ

∫ 1

S

∫ 1

0

∫ 1

0

(
(Φ1x)

2 + (Φ1y)
2
)
dxdydz

+
1

2

∫ S

−1

∫ 1

0

∫ 1

0

(
(Φ2x)

2 + (Φ2y)
2
)
dxdydz

+
∫ 1

0

∫ 1

0

[
1

4F
(ρ− 1)(1− S2) +

εσ̃

4
(S2

x + S2
y)

]
dxdy. (3.100)

It follows from (3.100) that strong surface tension of order ε−1 is required in order to

compete with the effects of gravity and inertia.

Using the notation

Φ =
1

2
(Φ1 + Φ2) , Λ =

1

2
(Φ2 − Φ1) , α =

1− ρ

1 + ρ
, γ =

σ

1 + ρ
, σ̃ =

σ

ε
,

equation (3.100) gives

Ẽ =
E0

1 + ρ
=

∫ 1

0

∫ 1

0

[
1

2
(1− αS)(1− S2)(Λ2

x + Λ2
y)

− α

4F
(1− S2) +

γ

4
(S2

x + S2
y)

]
dxdy (3.101)

where Ẽ is a constant since energy is conserved at each level of the expansion.

The expression (3.101) is a conserved quantity for the system. Next we show

that this is consistent with the governing equations (3.55), (3.58) and (3.59).

Using notation ~q = ∇Λ = (Λx, Λy) = (u, v) recasts equation (3.101) into

Ẽ =
E0

1 + ρ
=

∫ 1

0

∫ 1

0

[
1

2
(1− αS)(1− S2)(u2 + v2)

− α

4F
(1− S2) +

γ

4
(S2

x + S2
y)

]
dxdy, (3.102)

that is the required conserved energy. Next we check the consistency of the obtained

expression for the energy with the evolution equation. For that purpose, differentiate

equation (3.102) with respect to t.

∂Ẽ

∂t
=

∫ 1

0

∫ 1

0

[
−1

2
St(u

2 + v2)(α + 2S − 3αS2)

+ (1− αS)(1− S2)(uut + vvt)

+
α

2F
SSt +

γ

2
(SxSxt + SySyt)

]
dxdy. (3.103)



98

Eliminate St, ut and vt using equations (3.55), (3.58) and (3.59) to obtain

∂Ẽ

∂t
=

∫ 1

0

∫ 1

0

(
∂

∂x

[
u(S2 − 1)(u2 + v2)(−αS2 + 2S − α) +

α

F
S(1− S2)u

+ γ

{
u(S2 − 1)(Sxx + Syy)− Sx

[
∂

∂x
(u(S2 − 1)) +

∂

∂y
(v(S2 − 1))

]}]

+
∂

∂y

[
v(S2 − 1)(u2 + v2)(−αS2 + 2S − α) +

α

F
S(1− S2)v + γ

{
v(S2

− 1)(Sxx + Syy)− Sy

[
∂

∂x
(u(S2 − 1)) +

∂

∂y
(v(S2 − 1))

]}])
dxdy.(3.104)

Since ∆S = Sxx + Syy and ~q = (u, v), equation (3.104) can be written as

∂Ẽ

∂t
=

∫ 1

0

∫ 1

0

(
∂

∂x

[
u(S2 − 1)(u2 + v2)(−αS2 + 2S − α) +

α

F
S(1− S2)u

+ γ
{
u(S2 − 1)∆S − Sx div((S2 − 1)~q)

}]

+
∂

∂y

[
v(S2 − 1)(u2 + v2)(−αS2 + 2S − α) +

α

F
S(1− S2)v

+ γ
{
v(S2 − 1)∆S − Sy div((S2 − 1)~q)

}])
dxdy. (3.105)

The integrand in (3.105) is a sum of two partial derivatives with respect to x and y,

respectively. Therefore, the integral is a constant. Since the functions S, u and v are

periodic with period 1 in both x and y, the double integral on the right-hand side is

zero. Thus, the consistency of the energy equation (3.101) with evolution equations

(3.61)–(3.63) is verified.

3.5 Numerical Solution of Evolution Equations

In this section, the initial value problem for the system of evolution equations (3.61)–

(3.63) is addressed numerically.

3.5.1 Numerical Method

Numerical solutions are constructed on periodic domains for given periodic initial

conditions

S(x + 2π, y + 2π, t) = S(x, y, t),
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U(x + 2π, y + 2π, t) = U(x, y, t), V (x + 2π, y + 2π, t) = V (x, y, t), (3.106)

S = a sin x + ε sin y, U = U0, V = V0 − ε cos y. (3.107)

Conserved quantities Ii, i = 1, 2, 3, 4, derived in Section 3.4 provide a useful accuracy

check for the numerics.

A pseudo-spectral scheme was used, computing derivatives by use of FFTs, and

the time integrations are done in the real space by fourth-order Runge-Kutta method.

A stability requirement for this method restricts the size of ∆t as the number of

active Fourier modes increases. The reason of this is the dispersive nature of the

regularization provided by surface tension.

As can be seen from the evolution equations ((3.61)–(3.63), i.e., equations using

the unknown functions U and V , terms with the highest order derivatives present

linearly as opposed to the formulation in terms of the unknown functions u and v,

i.e. equations (3.55), (3.58) and (3.59). The first formulation allows to use the bigger

time step than the second one.

The computation is stopped when the value of any of the derivatives Sx, Sy,

Ux, Uy, Vx or Vy reaches the value of 5. The number of points used for numerical

solutions presented in the next section is n = 512, and the time step is 10−5 towards

the end of the computation. The results presented show that the number n of points

should be bigger, ranging between n = 1024 and n = 4096. Then it would be possible

to set a higher value for the slopes in the interface and the vortex sheet. This in turn

requires much more space and memory to use, decreases the time step due to the

stability criterium and makes calculations to be very lengthy.

The figures obtained at the last time computed indicate that another scheme,

possibly, implicit should be used in order to follow further the singularity formation

and remove numerical instability.

In what follows, we report on results from the above method.
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3.5.2 Computational Results: Solutions of Initial Value Problem

The following initial conditions were used,

S = a sin x + ε sin y, U = U0, V = V0 − ε cos y (3.108)

with a = 0.3, ε = 0.1, U0 = 0 (initially velocity jump in x-direction is absent),

V0 = 1.0 (we have initial velocity jump in y-direction). These initial conditions

impose disturbances which produce a three-dimensional flow. Note that the initial

amplitude a = 0.3 is relatively large. Smaller disturbances require much longer runs.

Numerical solutions presented in this section have surface tension coefficient

γ = 0 and γ = 3.

No Surface Tension: γ = 0.

Evolution of the interface S(x, y, t) for n = 512 is presented below. Figure 3.3

is initial shape of the interface. In this case, the number of linearly instable modes is

infinite.

Figure 3.3 Initial interface S(x, y, t), t = 0, γ = 0, n = 512.

In the next four figures 3.4 (a), (b) and 3.5 (a), (b), we show the interface at

t = 0.1, t = 0.2, t = 0.3 and t = 0.34672, respectively. The computations stopped at

t = 0.34672 according to a criterion that any of the derivatives Sx, Sy, Ux, Uv, Vx, Vy

reached the preset value of 5.

To see the details better, we present two-dimensional “slices” of the three-

dimensional interfacial shape for some values of x and y where we observed interesting



101

Figure 3.4 Interface S(x, y, t), γ = 0, n = 512 at time: (a) t = 0.1; (b) t = 0.2.

Figure 3.5 Interface S(x, y, t), γ = 0, n = 512 at time: (a) t = 0.3; t = 0.34672.

behavior. The first series of graphs (see Figure 3.6) represents the evolution of S at

fixed position x = 0 and x = π while y varies.

In Figures 3.7 (a) and (b), the evolution of slices of the interface with fixed

y = 0, y = π and varying x is presented.

Evolution of the vortex sheet strength in x-direction U(x, y, t) is presented next.

Figure 3.8 shows the initial shape for U which is flat since we initially impose no

velocity jump in the x-direction.

Its evolution for times t = 0.1, t = 0.2, t = 0.3 and t = 0.34672 is in Figures 3.9

(a), (b) and 3.10 (a), (b)

Cross-sections of U at x = 0 and x = π are shown on Figures 3.11 (a) and (b),

respectively.
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Figure 3.6 Slices of the interface S(x, y, t), γ = 0, n = 512 at: (a) x = 0; (b) x = π.
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Figure 3.7 Slice of the interface S(x, y, t), γ = 0, n = 512 at: (a) y = 0; (b) y = π.

At y = 0, y = π and x varying, the slices of U are presented in Figures 3.12 (a)

and (b).

The evolution of the vortex sheet strength in the y-direction, V (x, y, t), is shown

next. Figure 3.13 has the initial shape of V .

In the next four figures 3.14 (a), (b) and 3.15 (a), (b) we present graphs of V

for times t = 0.1, t = 0.2, t = 0.3 and t = 0.34672.

Slices of V at x = 0 and x = π are given in Figures 3.16 (a) and (b), respectively.

At y = 0, y = π and x varying, the slices of V are presented in Figures 3.17 (a)

and (b), respectively.

It should be noted that while the vortex sheet strength components appear to

grow, the interface remains bounded.
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Figure 3.8 Initial vortex sheet strength in x-direction, U(x, y, t), γ = 0, t = 0,
n = 512.

Figure 3.9 Vortex sheet strength in x-direction, U(x, y, t), γ = 0, n = 512 at time:
(a) t = 0.1; (b) t = 0.2.

Some graphs exhibit numerical instability at the last time t = 0.34672. This

instability is due to the fact that solution becomes more singular as the time evolves

and more points are needed to resolve this instability since higher wavenumbers begin

to play more important role, and we cannot neglect them. In this particular case,

we would need to work with n = 1024 at least in order to get solutions with higher

slopes.

More extensive computations are needed to pinpoint the singularity but our

results indicate that the solution becomes singular at a single point (x0, y0), say, after

a finite time. These findings are consistent with the calculations by Hou & Hu[40]

who considered three-dimensional vortex sheet evolution in unbounded domains and
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Figure 3.10 Vortex sheet strength in x-direction, U(x, y, t), γ = 0, n = 512 at time:
(a) t = 0.3; (b) t = 0.34672.
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Figure 3.11 Slices of the vortex sheet component U(x, y, t), γ = 0, n = 512 at: (a)
x = 0; (b) x = π.

came to the conclusion that singularity may appear at isolated points or along the

entire one-dimensional line but not along the segment.

Surface tension coefficient γ = 3.0.

Using the same initial conditions (3.108) as for the case γ = 0, we obtain the

solution at t = 0.4 for the interface S(x, y, t), given in Figure 3.18.

The corresponding graphs for vortex sheet strength components U(x, y, t) and

V (x, y, t), components in x and y directions, respectively, are presented in Figure

3.19.
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Figure 3.12 Slice of the vortex sheet component U(x, y, t), γ = 0, n = 512 at: (a)
y = 0; (b) y = π.

Figure 3.13 Initial vortex sheet strength in y-direction, V (x, y, t), γ = 0, t = 0,
n = 512.

In the program, the limit for the maximum derivative of S, U and V is set to

5. More extensive numerical calculations are needed to better resolve the singular

solution.
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Figure 3.14 Vortex sheet strength in y-direction, V (x, y, t), γ = 0, n = 512 at time:
(a) t = 0.1; (b) t = 0.2.

Figure 3.15 Vortex sheet strength in y-direction, V (x, y, t), γ = 0, n = 512 at time:
(a) t = 0.3; (b) t = 0.34672.
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Figure 3.16 Slices of the vortex sheet component V (x, y, t), γ = 0, n = 512 at: (a)
x = 0; (b) x = π.
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Figure 3.17 Slice of the vortex sheet component V (x, y, t), γ = 0, n = 512 at: (a)
y = 0; (b) y = π.

Figure 3.18 Interface S(x, y, t), γ = 3.0, n = 256 at time t = 0.4.

Figure 3.19 Vortex sheet strength component γ = 3.0, n = 256 at time t = 0.4.
(a) U(x, y, t), component in x-direction; (b) V (x, y, t), component in y-direction.



CHAPTER 4

DERIVATION OF GOVERNING EQUATIONS IN

INTEGRO-DIFFERENTIAL FORM

In this chapter we will derive a Birkhoff-Rott type integral equation that describes

the evolution of the shape of a vortex sheet as well as the evolution equation for

the unnormalized vortex sheet strength. We do this for a general configuration in

a channel of arbitrary width and for vortex sheet amplitudes of arbitrary size. The

main objective is to study the effect of the presence of walls at a finite distance,

on singularity formation, for example. We also consider two limiting cases of the

derived Birkhoff-Rott type equation for validation purposes where we compare our

results with established ones for vortex sheets in unbounded domains and which are

spatially periodic.

4.1 The Birkhoff-Rott Type Equation

Consider a two-dimensional velocity field u(x, y) = (u, v). The vorticity ω(x, y) is

defined by

ω = ∇× u.

To begin with, we consider vorticity distributions ω(x, y) which are smooth.

Assuming that the flow is incompressible, i.e., ∇ · u = 0 or ux + vy = 0, there

exists a scalar function ψ(x, y), called the stream function, such that

u =
∂ψ

∂y
; v = −∂ψ

∂x
.

Then the vorticity is

ω = (−∇2ψ)k = (vx − uy)k = ω(x, y)k,
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and it follows that the stream function ψ satisfies the Poisson equations with the

vorticity as a source function

∇2ψ = −ω. (4.1)

The domain of consideration is the 2-D strip D = {(x, y) : x ∈ R, 0 ≤ y ≤ D}, where

D is the dimensional height of the channel. The geometry is shown in Figure 4.1 (a).
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x

Figure 4.1 (a) Channel of height D; (b) infinite system of images.

A solution of equation (4.1) is obtained by solving the Poisson equation (4.1),

and it gives

ψ(x, y) = −
∫ ∫

D
ω(ξ, η)G(x, y; ξ, η)dξdη (4.2)

where G(x, y; ξ, η) is the Green’s function for the Laplacian in D. The boundary

conditions along the top and bottom of the channel are zero normal flow

v(x, 0) = v(x,D) = 0 ⇒ ψ(x, 0) = ψ(x,D) = 0.

In order to derive the Green’s function G(x, y; ξ, η), we suppose that a source of

unit strength is located inside the channel at (ξ, η) and that (x, y) is a second point
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inside the channel with (x, y) 6= (ξ, η). In order to satisfy the zero normal condition

along the top and bottom of the channel, we introduce the infinite system of images

shown in 4.1 (b). This system solves the Dirichlet Green’s function problem we are

interested in.

The images of positive strength are located at (ξ, η + 2Dj) (j = −∞, . . . ,∞)

whereas images of negative strength have location at (ξ,−η+2Dj) (j = −∞, . . . ,∞).

The free space Green’s function is given by

GF (x, y; ξ, η) =
1

2π
ln

(
(x− ξ)2 + (y − η)2

)1/2
=

1

4π
ln

(
(x− ξ)2 + (y − η)2

)
.

Therefore, the required Green’s function for the strip D is

G(x, y; ξ, η) =
∞∑

j=−∞

1

4π

[
ln

(
(x− ξ)2 + (y − η − 2jD)2

)

− ln
(
(x− ξ)2 + (y + η − 2jD)2

)]
.

The velocity components u and v may be found by differentiating the stream function

solution given in equation (4.2) with respect to y and x, respectively, i.e.

u =
∂ψ

∂y
= −

∫ ∫

D
ω(ξ, η)

∂G

∂y
dξdη,

v = −∂ψ

∂x
=

∫ ∫

D
ω(ξ, η)

∂G

∂x
dξdη,

where

∂G

∂x
=

∞∑

j=−∞

1

2π

[
x− ξ

(x− ξ)2 + (y − η − 2jD)2
− x− ξ

(x− ξ)2 + (y + η − 2jD)2

]
,

∂G

∂y
=

∞∑

j=−∞

1

2π

[
y − η − 2jD

(x− ξ)2 + (y − η − 2jD)2
− y + η − 2jD

(x− ξ)2 + (y + η − 2jD)2

]
.

Then

u(x, y) = −
∫ ∫

D
ω(ξ, η)

∞∑

j=−∞

1

2π

[
y − η − 2jD

(x− ξ)2 + (y − η − 2jD)2

− y + η − 2jD

(x− ξ)2 + (y + η − 2jD)2

]
dξdη,
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v(x, y) =
∫ ∫

D
ω(ξ, η)

∞∑

j=−∞

1

2π

[
x− ξ

(x− ξ)2 + (y − η − 2jD)2

− x− ξ

(x− ξ)2 + (y + η − 2jD)2

]
dξdη.

We can use these expressions to write a complex velocity,

(u− iv)(x, y) = − 1

2π

∫ ∫

D
ω(ξ, η)

∞∑

j=−∞

[
y − η − 2jD

(x− ξ)2 + (y − η − 2jD)2

− y + η − 2jD

(x− ξ)2 + (y + η − 2jD)2
+ i

x− ξ

(x− ξ)2 + (y − η − 2jD)2

−i
x− ξ

(x− ξ)2 + (y + η − 2jD)2

]
dξdη

= − i

2π

∫ ∫

D
ω(ξ, η)

∞∑

j=−∞

[
x− ξ − i(y − η − 2jD)

(x− ξ)2 + (y − η − 2jD)2

− x− ξ − i(y + η − 2jD)

(x− ξ)2 + (y + η − 2jD)2

]
dξdη.

Using complex notation

z = x + iy, z̃ = ξ + iη,

we obtain

(u− iv)(z) =
1

2πi

∫ ∫

D
ω(z̃)

∞∑

j=−∞

[
z − (z̃ + 2jDi)

(z − (z̃ + 2jDi))(z − (z̃ + 2jDi))

− z − (z̃ + 2jDi)

(z − (z̃ + 2jDi))(z − (z̃ + 2jDi))


 dξdη,

where the bar ¯ indicates complex conjugation, and after simplification we have

(u− iv)(z) =
1

2πi

∫ ∫

D
ω(z̃)

∞∑

j=−∞

[
1

z − (z̃ + 2jDi)
− 1

z − (z̃ + 2jDi)

]
dξdη.(4.3)

We now consider the case in which the vorticity is concentrated in a region of

size ε about the curve c(s) parametrized by (x(s), y(s)), where the parameter s is arc

length. Define the function

σ(s) =
∫ ε/2

−ε/2
ω(ν(s))dν(s) (4.4)
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where ν(s) is the distance normal to the curve at s. If we now suppose that ε → 0

and max |ω| → ∞ (i.e., the support of vorticity narrows and the vorticity becomes

unbounded) so that σ(s) remains constant, we arrive at the concept of a vortex sheet

characterized locally by the vorticity density σ(s).

Hence, when the vorticity is zero everywhere except on a given vortex sheet,

equation (4.3) for the velocity is transformed into a line integral

(u− iv)(z) =
1

2πi

∫ ∞

−∞
σ(s)

∞∑

j=−∞

[
1

z − (z(s) + 2jDi)

− 1

z − (z(s) + 2jDi)

]
ds (4.5)

where z̃ = z(s) and z ∈ R2 \ c.

Now, introduce a complex potential Ω = φ + iψ, where φ is the potential of the

flow (u = ∇φ), and q = u + iv is the complex velocity. Then q̄ = dΩ
dz

= (u − iv)(z).

Note that the complex potential corresponding to the velocity distribution (4.5) is

Ω(z) =
1

2πi

∫ ∞

−∞
σ(s)

∞∑

j=−∞
[ln(z − (z(s) + 2jDi))

− ln(z − (z(s) + 2jDi))
]
ds. (4.6)

Next we evaluate the infinite series in (4.5) using ideas presented in the paper

by Greengard [35].

Denote by ũ1(z) the velocity field induced by images of positive unit strength

(more precisely, the velocity field is 1
2πi

ũ1(z))

ũ1(z) =
∞∑

j=−∞

1

z − (z(s) + 2jDi)
=

1

z − z(s)
+

∞∑

j=1

(
1

z − z(s)− 2jDi

+
1

z − z(s) + 2jDi

)
=

1

z − z(s)
+

∞∑

j=1

2(z − z(s))

(z − z(s))2 + 4j2D2

=
1

z − z(s)
+

2(z − z(s))

4D2

∞∑

j=1

1
(

z−z(s)
2D

)2
+ j2

=
1

z − z(s)
+ 2

z − z(s)

2D

1

2D

∗
∞∑

j=1

1
(

z−z(s)
2D

)2
+ j2

=
π

2D





2D

π(z − z(s))
+ 2

z − z(s)

2Dπ

∞∑

j=1

1
(

z−z(s)
2D

)2
+ j2





.
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From ([34], p.36)

coth(πz) =
1

πz
+

2z

π

∞∑

k=1

1

z2 + k2
, (4.7)

and with z = z−z(s)
2D

, we obtain

ũ1(z) =
π

2D
coth

(
π

2D
(z − z(s))

)
. (4.8)

Similarly, the velocity induced by images of negative strength

ũ2(z) = − π

2D
coth

(
π

2D
(z − z(s))

)
. (4.9)

The net velocity field is, therefore

ũ(z) =
π

2D

[
coth

(
π

2D
(z − z(s))

)
− coth

(
π

2D
(z − z(s))

)]
. (4.10)

Hence the velocity field equation (4.5) induced by vorticity distributed along the

vortex sheet may be written as

(u− iv)(z) =
1

2πi

∫ ∞

−∞
σ(s)

π

2D

[
coth

(
π

2D
(z − z(s))

)

− coth
(

π

2D
(z − z(s))

)]
ds (4.11)

where z ∈ R2 \c. The last equation is the expression of the complex velocity of points

z not on the vortex sheet.

If gravity and surface tension are absent, then we obtain the Kelvin-Helmholtz

type problem and in this case we can make a change of variables replacing the variable

of integration s by a variable Γ defined by

Γ(s) =
∫ s

0
σ(τ)dτ. (4.12)

Then equation (4.11) becomes

(u− iv)(z) =
1

2πi

∫ ∞

−∞
π

2D

[
coth

(
π

2D
(z − z(Γ′))

)

− coth
(

π

2D
(z − z(Γ′))

)]
dΓ′ (4.13)



114

where z ∈ R2 \ c.

The variable Γ(s) is the total vortex sheet strength between the point s = 0

and an arbitrary point s, and physically this is the circulation about a curve whose

end points are s = 0 and s. The advantage of the variable Γ is that if an arbitrary

point on the interface is defined to move with a velocity equal to the average of the

flow velocities at the two sides of the sheet, then the quantity Γ remains constant in

time at that point. This is a consequence of Kelvin’s circulation theorem [79], which

says that the circulation about any contour composed of the same fluid particles (a

fluid line) is constant in an inviscid fluid and if the external forces are conservative.

When external forces, for example, gravity, are present, then it is more difficult

to define the velocity of the interface in such a way that the quantity Γ(s) would

remain constant on the sheet. This is due to the creation of vorticity on the

interface caused by the presence of external forces. Therefore, we cannot use equation

(4.13). Instead, it is useful to rewrite equation (4.11) using the Lagrangian variable

(Lagrangian marker) e. In terms of e, equation (4.11) becomes

(u− iv)(z) =
1

2πi

∫ ∞

−∞
σ(e)se

π

2D

[
coth

(
π

2D
(z − z(e))

)

− coth
(

π

2D
(z − z(e))

)]
de (4.14)

where z ∈ R2 \ c. Introducing the unnormalized vortex sheet strength γ(e, t) given by

γ(e, t) = σ(e, t)
∂s

∂e
, (4.15)

equation (4.14) may be written as

(u− iv)(z) =
1

2πi

∫ ∞

−∞
γ(e, t)

π

2D

[
coth

(
π

2D
(z − z(e))

)

− coth
(

π

2D
(z − z(e))

)]
de. (4.16)

We note that the vortex sheet strength γ depends on time t, which stresses that γ

changes with time due to creation of vorticity as a consequence of action of gravity,

for example.
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Equation (4.16) defines the velocity field induced by the vortex sheet at any

point z of the plane except at points on the sheet c. The velocity at the interface

may be determined as the average of those just above and below the interface (this is

more conventional) or may be defined as a weighted average of the velocities across

the interface. The latter definition of the velocity of the vortex sheet was first used in

[4] in order to improve the accuracy of numerical calculations. Later, this approach

was shown to be convenient and useful in a theoretical analysis of the Rayleigh-Taylor

problem in [83]. In this work, we choose the average speed approach. The choice of

the tangential velocity of a point on the interface to be the arithmetic average (or

weighted average) of the tangential components of the fluid velocity on either side

corresponds to the so-called Lagrangian formulation [42] of the problem.

Let us define

B[z](e) = lim
ε→0

1

2πi

{∫ e−ε

−1/ε
γ(e, t)

π

2D

[
coth(

π

2D
(z − z(e)))− coth(

π

2D
(z − z(e)))

]
de

+
∫ 1/ε

e+ε
γ(e, t)

π

2D

[
coth(

π

2D
(z − z(e)))− coth(

π

2D
(z − z(e)))

]
de

}

=
1

2πi
−
∫ ∞

−∞
γ(e, t)

π

2D

[
coth(

π

2D
(z − z(e)))− coth(

π

2D
(z − z(e)))

]
de,

B[z]+(e) = (u1 − iv1)(e) = lim
z→z(e)+

z∈ upper fluid

(u− iv)(z), (4.17)

B[z]−(e) = (u2 − iv2)(e) = lim
z→z(e)−

z∈ lower fluid

(u− iv)(z), (4.18)

where the limit in the last two expressions is taken over a path contained in the

upper/lower part of the channel determined by the vortex sheet. The line through

the integral sign in the first equation signifies Cauchy’s principal value (for definition,

see Appendix D). Using the Sokhotski-Plemelj formulae (see, for example, [61, 17],

[55] and Appendix D), we obtain

B[z](e) =
1

2

{
B[z]+(e) + B[z]−(e)

}
. (4.19)
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Since we defined the velocity at a point of the vortex sheet as the average

of the limiting velocities just above and below the vortex sheet, respectively, i.e.

(u + iv)(sheet) = 1
2
{(u1 + iv1) + (u2 + iv2)}, the desired equation for the complex

velocity of a point on the vortex sheet follows from equation (4.19) as

dz̄

dt
(e, t) =

1

2πi
−
∫ ∞

−∞
γ(e, t)

π

2D

[
coth(

π

2D
(z − z(e)))

− coth(
π

2D
(z − z(e)))

]
de. (4.20)

The integral on the right-hand side of (4.20) is the Birkhoff-Rott type integral for

the case of a bounded vortex sheet, and it is analogous to the corresponding case of

an unbounded vortex sheet. In order to complete the description of the motion, we

need an additional equation that describes the evolution for γ(t). We will derive this

equation in the following section.

Note that the complex potential corresponding to the complex velocity (4.20)

may be written as

Ω(z) =
1

2πi
−
∫ ∞

−∞
γ(e, t)

π

2D

[
ln sinh(

π

2D
(z − z(e)))

− ln sinh(
π

2D
(z − z(e)))

]
de. (4.21)

4.1.1 Limiting Case for the Complex Potential for D À 1 — Unbounded

Vortex Sheet

We show next that as D → ∞, we recover the Birkhoff-Rott equation for an

unbounded vortex sheet [12], namely,

∂

∂t
z̄(e, t) =

1

2πi
−
∫ ∞

−∞
γ(e, t)

de

z − z(e, t)
. (4.22)

Equation (4.22) was first derived using the Biot-Savart law by Birkhoff [12] and then

in a more mathematically rigorous way by Sulem et al. [86].

First make the change of variables

ζ = z − iD

2
, ζ(e) = z(e)− iD

2
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iD/2

−iD/2

ζ

0

z

0

z

z0

iD

ζ

ζ

= z − iD/2ζ

Figure 4.2 (a) Channel in z-plane; (b) shifted channel in ζ-plane.

that shifts the x-axis to the horizontal centerline of the strip (see Figure 4.2).

Then

z − z(e) = ζ − ζ(e) and z − z(e) = ζ − ζ(e) + iD.

Consider the difference under the sign of the integral in (4.11),

π

2D

[
coth

(
π

2D
(z − z(e))

)
− coth

(
π

2D
(z − z(e))

)]

=
π

2D

[
coth

(
π

2D
(ζ − ζ(e))

)
− coth

(
π

2D
(ζ − ζ(e) + iD)

)]
.

As D → ∞, the upper wall will tend to plus infinity while the lower wall to minus

infinity and the strip will cover the whole of R2. Observe that for fixed ζ − ζ(e)

π

2D
(ζ − ζ(e)) → 0,

π

2D
(ζ − ζ(e) + iD) =

π

2D
(ζ − ζ(e)) + i

π

2
→ i

π

2
as D →∞.

For π
2D

(ζ − ζ(e)) ¿ 1,

coth
π

2D
(ζ − ζ(e)) =

cosh π
2D

(ζ − ζ(e))

sinh π
2D

(ζ − ζ(e))
∼ 1

π
2D

(ζ − ζ(e))
,

coth
π

2D
(ζ − ζ(e) + iD) ∼ coth(i

π

2
) =

cosh(iπ
2
)

sinh(iπ
2
)

=
cos π

2

i sin π
2

= 0.

Hence,

π

2D

[
coth

(
π

2D
(ζ − ζ(e))

)
− coth

(
π

2D
(ζ − ζ(e) + iD)

)]



118

∼ π

2D

[
1

π
2D

(ζ − ζ(e))
− 0

]
=

1

ζ − ζ(e)
,

and we recover the equation for the unbounded vortex sheet (4.22) in terms of

variables ζ and ζ(e),

∂

∂t
ζ̄(e, t) =

1

2πi
−
∫

γ(e, t)
de

ζ − ζ(e, t)
.

4.1.2 The Periodic Bounded Vortex Sheet

We now give a formal derivation of the periodic bounded vortex sheet equation with

period P = 2L. We will use a method modified from that proposed by Choi and

Humphrey in [24] where the authors derived an expression for the stream function

due to a single vortex for the potential flow in a rectangular domain.

Consider the complex potential (4.6) before summing the contributions of the

doubly infinite image system. Using a Lagrangian representation, we have,

Ω(z) =
1

2πi

∫ ∞

−∞
γ(e)


ln

∞∏

j=−∞
(z − z(e)− 2jDi)

− ln
∞∏

j=−∞
(z − z(e)− 2jDi)


 de. (4.23)

Due to periodicity we can write z(e, t) = e + s(e, t) where s(e + 2L, t) = s(e, t) and

γ(e + 2L, t) = γ(e, t). Then the integral in (4.23) can be written as an infinite sum

over a finite interval as follows

Ω(z) =
1

2πi

∞∑

n=−∞

∫ 2L(n+1)

2Ln
γ(e, t)



ln

∞∏

j=−∞
(z − z(e)− 2jDi)

− ln
∞∏

j=−∞
(z − z(e)− 2jDi)



 de.

Changing the variable of integration e to p = e− 2Ln we obtain

Ω(z) =
1

2πi

∞∑

n=−∞

∫ 2L

0
γ(p + 2Ln, t)



ln

∞∏

j=−∞
(z − [p + 2Ln + s(p + 2Ln, t)]

− 2jDi)− ln
∞∏

j=−∞
(z − [p + 2Ln + s(p + 2Ln)]− 2jDi)



 dp.
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Periodicity of s and γ in variable p gives

Ω(z) =
1

2πi

∞∑

n=−∞

∫ 2L

0
γ(p, t)



ln

∞∏

j=−∞
(z − z(p, t)− 2Ln− 2jDi)

− ln
∞∏

j=−∞
(z − z(p, t)− 2Ln− 2jDi)



 dp

=
1

2πi

∫ 2L

0
γ(p, t)



ln

∞∏

n=−∞

∞∏

j=−∞
(z − z(p, t)− 2Ln− 2jDi)

− ln
∞∏

n=−∞

∞∏

j=−∞
(z − z(p, t)− 2Ln− 2jDi)



 dp.

Introduce

F(z) = γ(p, t) ln
∞∏

n=−∞

∞∏

j=−∞
(z − 2Ln− 2jDi).

Then the complex potential may be written as

Ω(z) =
1

2πi

∫ 2L

0
[F(z − z(p, t))−F(z − z(p, t))]dp.

Consider the function F next. Changing the order of multiplication in both

infinite products, F may be written as

F = γ(p, t) ln
−∞∏
n=∞

−∞∏

j=∞
(z + 2Ln + 2jDi)

= γ(p, t) ln


z · ∏

n 6=0

∏

j 6=0
simult.

(z + 2Ln + 2jDi)


 . (4.24)

Note that in the last doubly infinite product, the simultaneous values of n = 0, j = 0

are to be omitted. We can rewrite F as

F = γ(p, t) ln


z · ∏

n 6=0

∏

j 6=0
simult.

(2Ln + 2jDi)

(
1 +

z

2Ln + 2jDi

)

 .

Proposition 2 The following identity is true

ln

(∏
n

∏
m

anmbnm

)
= ln

(∏
n

∏
m

anm ·
∏
n

∏
m

bnm

)
. (4.25)
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Proof. Indeed,

ln

(∏
n

∏
m

anmbnm

)
=

∑
n

∑
m

ln(anmbnm) =
∑
n

∑
m

ln(anm + ln bnm)

=
∑
n

∑
m

ln anm +
∑
n

∑
m

ln bnm = ln
∏
n

∏
m

anm + ln
∏
n

∏
m

bnm

= ln

(∏
n

∏
m

anm ·
∏
n

∏
m

bnm

)
.

Using (4.25) we get

F = γ(p, t) ln


z

∏

n 6=0

∏

j 6=0
simult.

(
1 +

z

2Ln + 2jDi

)
· ∏

n 6=0

∏

j 6=0
simult.

(2Ln + 2jDi)




= γ(p, t) ln


z

∏

n 6=0

∏

j 6=0
simult.

(
1 +

z

2Ln + 2jDi

)

+γ(p, t) ln




∏

n 6=0

∏

j 6=0
simult.

(2Ln + 2jDi)


.

Denote

G1(n, j) = γ(p, t) ln




∏

n 6=0

∏

j 6=0
simult.

(2Ln + 2jDi)


 .

Then

F = γ(p, t) ln


z

∏

n 6=0

∏

j 6=0
simult.

(
1 +

z

2Ln + 2jDi

)

 + G1(n, j).

The Jacobi’s function H(u, k) is defined as ([18], p.303)

H(u, k) =

√
2kk′K

π
u

∏

n 6=0

∏

j 6=0
simult.

[
1 +

u

2nK + 2jK ′i

]
(4.26)

where k is the modulus, K =
∫ π/2
0

dφ√
1−k2 sin2 φ

, and k′ =
√

1− k2 is the complimentary

modulus, and K ′ =
∫ π/2
0

dφ√
1−k′2 sin2 φ

. For more information about Jacobi’s functions

and their relations to elliptic integrals and elliptic functions, see Appendix C as well



121

as Cayley [18] and Milne-Thomson in [1], Chapters 16 and 17. Using (4.26), we can

write

z
∏

n 6=0

∏

j 6=0
simult.

(
1 +

z

2Ln + 2jDi

)
= z

∏

n 6=0

∏

j 6=0
simult.

(
1 +

z
L
K

(2nK + 2jDK
L
i)

)

= z
∏

n 6=0

∏

j 6=0
simult.

(
1 +

K
L
z

2nK + 2jK ′i

)
=

L

K
· K

L
z

∏

n6=0

∏

j 6=0
simult.

(
1 +

K
L
z

2nK + 2jK ′i

)

=
L

K

√
π

2kk′K
H

(
K

L
z, k

)

where DK
L

= K ′ or L
D

= K
K′ . Hence

z
∏

n 6=0

∏

j 6=0
simult.

(
1 +

z

2Ln + 2jDi

)
=

L

K

√
π

2kk′K
H

(
K

L
z, k

)
.

This is really a function of L and D since the relation DK
L

= K ′ picks any k (see

Figure C.1 in Appendix C). Then

F = γ(p, t) ln
[
L

K

√
π

2kk′K
H

(
K

L
z, k

)]
+ G1(n, j)

= γ(p, t) ln
[
L

K

√
π

2kk′K

]
+ γ(p, t) ln H

(
K

L
z, k

)
+ G1(n, j),

whence

F(z − z(p, t))−F(z − z(p, t)) = γ(p, t) ln H
(

K

L
(z − z(p, t)), k

)

−γ(p, t) ln H
(

K

L
(z − z(p, t)), k

)
.

Hence we can write the complex potential as

Ω(z) =
1

2πi

∫ 2L

0
γ(p, t)

[
ln H

(
K

L
(z − z(p, t)), k

)

− ln H
(

K

L
(z − z(p, t)), k

)]
dp. (4.27)

Differentiating formally the complex potential Ω in (4.27) with respect to z, we

get
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(u− iv)(z) =
dΩ

dz
=

1

2πi

∫ 2L

0
γ(p, t)

d

dz

[
ln H

(
K

L
(z − z(p, t)), k

)

− ln H
(

K

L
(z − z(p, t)), k

)]
dp.

From ([18], pp.155 and 143)

H(u, k) = −i e−
π

4K
(K′−2iu) Θ(u + iK ′, k),

d

du
Θ(u, k) = Θ(u, k) · Z(u, k)

where Θ(u, k) and Z(u, k) are Theta and Zeta Jacobi’s functions (see Appendix C).

We derive, therefore,

d

du
H(u, k) = H(u, k) ·

[
πi

2K
+ Z(u + iK ′, k)

]
. (4.28)

Using (4.28) we obtain

(u− iv)(z) =
1

2πi

∫ 2L

0
γ(p, t)

[
K
L

H(K
L

(z − z(p, t)), k)
H

(
K

L
(z − z(p, t)), k

)

∗
(

πi

2K
+ Z

(
K

L
(z − z(p, t)) + iK ′, k

))
−

K
L

H(K
L

(z − z(p, t)), k)

∗H
(

K

L
(z − z(p, t)), k

) (
πi

2K
+ Z

(
K

L
(z − z(p, t)) + iK ′, k

))]
dp.

Hence

(u− iv)(z) =
1

2πi

∫ 2L

0
γ(p, t)

K

L

[
Z

(
K

L
(z − z(p, t)) + iK ′, k

)

−Z
(

K

L
(z − z(p, t)) + iK ′, k

)]
dp. (4.29)

Equation (4.29) is the required periodic extension of the bounded vortex sheet.
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4.1.3 Limiting Case for the Complex Potential L À 1, D is Finite

Consider the complex potential (4.27). We can show that as the aspect ratio L
D
→∞,

i.e., the period becomes infinite, we recover the expression for the complex potential

without periodic extension (4.21). Indeed, as L
D
→∞, the values of k, k′, K and K ′

become

k = 1, k′ = 0, K = ∞, K ′ =
π

2
.

We also have L
D

= K
K′ , hence K

L
= K′

D
and as K → ∞, the ratio K′

D
= π/2

D
= π

2D

remains finite.

It follows from ([18], p.156)

H(u, k) =
√

k sn(u, k)Θ(u, k), (4.30)

where Θ(u, k) is the Jacobi’s function defined as ([18], p.143)

Θ(u, k) =

√
2k′K

π
e
∫
0

Z(u,k)du . (4.31)

Denote the difference of logarithms in (4.27) as

Λ(z, k) = ln H
(

K

L
(z − z(p, t)), k

)
− ln H

(
K

L
(z − z(p, t)), k

)

and let

u =
K

L
(z − z(p, t)) =

K ′

D
(z − z(p, t)), v =

K

L
(z − z(p, t)) =

K ′

D
(z − z(p, t))

for brevity.

Then using (4.30) we obtain

Λ(z, k) = ln
H(u, k)

H(v, k)
= ln

√
2kk′K

π
sn(u, k) e

∫
0

Z(u,k)du

√
2kk′K

π
sn(v, k) e

∫
0

Z(v,k)dv
= ln

sn(u, k) e
∫
0

Z(u,k)du

sn(v, k) e
∫
0

Z(v,k)dv
.

As k = 1, Z(u, 1) = tanh u. Therefore,

∫

0
Z(u, 1)du =

∫

0
tanh udu =

∫

0

sinh u

cosh u
du = ln cosh u.
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Hence,

e
∫
0

Z(u,1)du = eln cosh u = cosh u.

On the other hand, sn(u, 1) = tanh u. The same reasoning is true for functions of the

argument v. Hence,

lim
L
D

= K
K′→∞

Λ(z, k) = lim
L
D

= K
K′→∞

ln
sn(u, k) e

∫
0

Z(u,k)du

sn(v, k) e
∫
0

Z(v,k)dv
= ln

tanh u cosh u

tanh v cosh v


k=1

= ln
sinh u

sinh v


k=1

= ln sinh
π

2D
(z − z(p, t))− ln sinh

π

2D
(z − z(p, t)),

and the complex potential becomes (4.21)

Ω(z) =
1

2πi

∫ ∞

−∞
γ(e, t)

π

2D

[
ln sinh(

π

2D
(z − z(s)))− ln sinh(

π

2D
(z − z(s)))

]
de

as desired.

4.1.4 Limiting Case for the Complex Velocity D À 1, L is Finite

Next we show that as D → ∞ and L = π we recover, to the leading order, the

periodic extension for the unbounded vortex sheet that has the form

(u− iv)(z) =
dΩ

dz
=

1

4πi

∫ 2π

0
γ(p, t) cot

(
1

2
(z − z(p, t))

)
dp. (4.32)

(For derivation of (4.32), see, for example, [83]). Once again, the velocity at the

interface is determined by the principal value of the integral.

Changing to the variable ζ = z − iD
2

, we move the strip along the y-axis

downward, so now as D → ∞, the strip expands to infinity in both directions.

Denote by Φ(z, k,K,K ′) the difference of the Jacobi’s Z functions in (4.29), i.e.

Φ(z, k,K,K ′) ≡ Z
(

K

L
(z − z(p, t)) + iK ′, k

)
− Z

(
K

L
(z − z(p, t)) + iK ′, k

)

= Z
(

K

L
(ζ − ζ(p, t)) + iK ′, k

)
− Z

(
K

L
(ζ − ζ(p, t) + iD) + iK ′, k

)
.
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Observe that since K
L
D = K ′, we have

K

L
(ζ − ζ(p, t) + iD) + iK ′ =

K

L
(ζ − ζ(p, t)) + 2iK ′. (4.33)

The following identity is useful ([18], p.152)

Z(u + a, k) = Z(u, k) + Z(a, k)− k2 sn(u, k) sn(a, k) sn(u + a, k). (4.34)

Using (4.34) with a = 2iK ′, we obtain

Z(u + 2iK ′, k) = Z(u, k) + Z(2iK ′, k)− k2 sn(u, k) sn(2iK ′, k) sn(u + 2iK ′, k).

Note that sn(u, k) has 2iK ′ as one of its periods, hence sn(2iK ′, k) = sn(0, k), sn(u+

2iK ′, k) = sn(u, k). Since sn(0, k) = 0 and Z(2iK ′, k) = − iπ
K

, we conclude that

Z(u + 2iK ′, k) = Z(u, k)− iπ

K
. (4.35)

Another property of the Jacobi’s function Z(u, k) which is useful here, is ([18], p.149)

Z(u + iK ′, k) = Z(u, k) +
cn(u, k) dn(u, k)

sn(u, k)
− iπ

2K
. (4.36)

Using (4.33), (4.35) and (4.36), the function Φ may be written as

Φ(z, k,K,K ′) = Z
(

K

L
(ζ − ζ(p, t)), k

)
− Z

(
K

L
(ζ − ζ(p, t)), k

)

+
cn(K

L
(ζ − ζ(p, t)), k) dn(K

L
(ζ − ζ(p, t)), k)

sn(K
L

(ζ − ζ(p, t)), k)
+

iπ

2K
.

Extension of the strip to infinity implies the aspect ratio D
L
→ ∞. For this case, k,

k′, K and K ′ become

L

D
=

K

K ′ = 0, k = 0, k′ = 1, K =
π

2
, K ′ = ∞. (4.37)

Note that under the above conditions, the expression K
L

(ζ − ζ(p, t)) is finite. For a

finite argument, we can use the relations ([1], p.571 and p.595)

cn(u, 0) = cos u, sn(u, 0) = sin u, dn(u, 0) = 1, Z(u, 0) = 0. (4.38)



126

Then

lim
k=0

K= π
2

K′=∞

Φ(z, k,K,K ′) = 0 +
cos( π

2L
(ζ − ζ(p, t)))

sin( π
2L

(ζ − ζ(p, t)))
− 0 + i

= cot(
π

2L
(ζ − ζ(p, t))) + i.

As the period 2L = 2π, π
2L

= 1
2
, so we obtain

(u− iv)(ζ) =
dΩ

dζ
=

1

2πi

∫ 2π

0
γ(p, t)

1

2

[
cot

(
1

2
(ζ − ζ(p, t))

)
+ i

]
dp.

As point ζ approaches the interface, i.e. ζ − ζ(p, t) → 0, the dominant term in

cot(1
2
(ζ− ζ(p, t)))+ i is cot(1

2
(ζ− ζ(p, t))) since cot becomes singular in this case. So,

in the limit ζ − ζ(p, t) → 0 we recover the formula (4.32).

4.1.5 Limiting Case for the Complex Velocity L À 1, D is Finite

Another limiting case of (4.29) is when L
D
→∞ with D fixed and L →∞. We should

be able to recover the Birkhoff-Rott equation for the bounded vortex sheet with no

periodicity imposed, i.e., equation (4.20).

First we observe that due to the periodicity in e of functions γ(e, t), s(e, t), we

can shift the interval of integration in (4.29) from [0, 2L] to [−L,L]. No shift along

the y-axis would be necessary.

For this case, k, k′, K and K ′ become (see [18], p.45)

k = 1, k′ = 0, K = ∞, K ′ =
π

2
.

Using relation (4.36) and K
L

= K′
D

, we can write

(u− iv)(z) =
1

2πi

∫ L

−L
γ(p)

K ′

D

{
Z(

K ′

D
(z − z(p, t)), k)

+
cn(K′

D
(z − z(p, t)), k) dn(K′

D
(z − z(p, t)), k)

sn(K′
D

(z − z(p, t)), k)
− iπ

2K
− Z(

K ′

D
(z − z(p, t)), k)

−cn(K′
D

(z − z(p, t)), k) dn(K′
D

(z − z(p, t)), k)

sn(K′
D

(z − z(p, t)), k)
+

iπ

2K

}
dp.
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The argument u in the elliptic functions is finite since we have

u =
K ′

D
(z − z(p, t)) =

π

2D
(z − z(p, t))

or

u =
K ′

D
(z − z(p, t)) =

π

2D
(z − z(p, t)),

so we can use the relations ([1], p.571)

sn(u, 1) = tanh u, cn(u, 1) = sech u, dn(u, 1) = sech u, Z(u, 1) = tanh u.

Therefore

cn(u, 1) dn(u, 1)

sn(u, 1)
= coth u.

Using the above relations, we obtain the limit of (u− iv) as L
D
→∞, i.e.,

lim
k→1, k′→0

K′→π
2 , K→∞

(u− iv)(z) =
1

2πi

∫ ∞

−∞
γ(p)

π

2D

{
tanh(

π

2D
(z − z(p, t)))

− tanh(
π

2D
(z − z(p, t)))

+ coth(
π

2D
(z − z(p, t)))− coth(

π

2D
(z − z(p, t)))

}
dp.

As the point z approaches the interface, i.e., z − z(p, t) and z − z(p, t) become small,

terms with tanh will approach 0 while terms with coth will become singular and

hence dominant. Therefore, we recover the equation for the velocity of the vortex

sheet (4.20) when the domain is a bounded channel and no periodicity is imposed.
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4.2 Vorticity Evolution Equation

In this section, we derive the evolution equation for the unnormalized vortex sheet

strength γ(e, t). In our derivation, we follow that given by Baker, Meiron & Orszag [6]

and Siegel [83] but set the weight parameter β = 0. We also incorporate the surface

tension term into the vorticity equation.

Consider an interface between inviscid, incompressible, irrotational fluids. The

flow of each fluid is governed by an Euler equation

ρ1

[
∂ui

∂t
+ ui · ∇ui

]
= −∇pi + ρig, i = 1, 2, (4.39)

where the subscripts i = 1 and 2 correspond to the upper and lower fluids, respectively.

The boundary conditions at the interface are continuity of the normal component of

velocity, i.e., u1 ·n = u2 ·n where n is the outward normal to the interface, a kinematic

condition, and the pressure difference across the interface that can be expressed by

Laplace’s equation p1− p2 = σ0κ, where σ0 is the surface tension coefficient, and κ is

the curvature of the interface.

Let the interface be a curve c(e) parametrized by x = (x(e), y(e)), where e is a

Lagrangian variable, and ŝ a unit tangential vector at x. Then the pressure difference

can be written as

p1 − p2 = σ0 · xeye − xeye

(x2
e + y2

e)
3/2

. (4.40)

Define the vorticity density σ by

σ = (u2 − u1) · ŝ. (4.41)

The quantity defined in (4.41) is equivalent to that in (4.4) from the previous section

as ε → 0. This can be shown by using Stokes’ theorem.

Recall that the unnormalized vortex sheet strength γ(e, t) was defined in (4.15)

as

γ(e, t) = σ(e, t)
∂s

∂e
,
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where s is the arc length. The velocity of a Lagrangian point at the interface labelled

by e is defined as the average of the velocities across the interface. In terms of the

complex velocity u− iv, this definition is

(u− iv)(x(e), y(e)) =
(u1 − iv1) + (u2 − iv2)

2
, (4.42)

where ui − ivi ≡ qi, i = 1, 2, are the complex velocities evaluated at each side of the

interface near point (x(e), y(e)) and defined in (4.17), (4.18). Then the unnormalized

vortex sheet strength can be written as

γ = σ(e, t)se = (u2 − u1)ŝse = (q̄2 − q̄1)ze = ((u2 − iv2)− (u1 − iv1))ze, (4.43)

where ze = xe + iye is the complex analog of the vector (xe, ye).

Let φ(x, y, t) be the complex potential of the flow at point (x, y) and time t.

Define

φ1(x(e, t), y(e, t), t) = lim
(x,y)→(x(e)+,y(e)+)

z∈ upper fluid

φ(x, y, t), (4.44)

φ2(x(e, t), y(e, t), t) = lim
(x,y)→(x(e)−,y(e)−)

z∈ lower fluid

φ(x, y, t). (4.45)

Since the flow in each fluid is irrotational, we can evaluate Bernoulli’s equation on

either side of the interface to get

∂φ1

∂t


x,y

+
1

2
q̄1q1 +

p1

ρ1

+ gy = 0, (4.46)

∂φ2

∂t


x,y

+
1

2
q̄2q2 +

p2

ρ2

+ gy = 0, (4.47)

where ∂
∂t


x,y

is used to denote the Eulerian time derivative; qi = ui − ivi are the

complex velocities of the upper and lower fluids near point (x(e), y(e)) from above and

below, respectively. The Eulerian time derivative and the Lagrangian time derivative

of φi, i = 1, 2, are related as follows [83]:

∂φi

∂t


e
=

∂φi

∂x

∂x

∂t


e
+

∂φi

∂y

∂y

∂t


e
+

∂φi

∂t


x,y

= uiusheet + vivsheet +
∂φi

∂t


x,y
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where usheet = ∂x
∂t


e
, vsheet = ∂y

∂t


e
. Since

qsheet = usheet + ivsheet =

(
∂x

∂t
+ i

∂y

∂t

)
e
=

∂z

∂t


e
,

we obtain

∂φi

∂t


e
= Re{q̄sheetqi}+

∂φi

∂t


x,y

. (4.48)

Solving equation (4.48) for ∂φi

∂t


x,y

and substituting the resulting expression into

(4.46), (4.47) yields

∂φ1

∂t


e
− Re{q̄sheetq1}+

1

2
q̄1q1 +

p1

ρ1

+ gy = 0, (4.49)

∂φ2

∂t


e
− Re{q̄sheetq2}+

1

2
q̄2q2 +

p2

ρ2

+ gy = 0. (4.50)

Denote by

a =
∂φ1

∂t


e
− Re{q̄sheetq1}+

1

2
q̄1q1,

b =
∂φ2

∂t


e
− Re{q̄sheetq2}+

1

2
q̄2q2.

Multiply equation (4.49) by ρ1 and equation (4.50) by ρ2. In terms of a and b, the

resulting equations are

ρ1a + p1 + ρ1gy = 0, (4.51)

ρ2b + p2 + ρ2gy = 0. (4.52)

Subtract equation (4.51) from equation (4.52) and notice

ρ2b− ρ1a =
1

2
(2ρ2b− 2ρ1a) =

1

2
(ρ2b + ρ2b + ρ2a− ρ2a + ρ1b− ρ1b− ρ1a

− ρ1a) =
1

2
(ρ2(a + b) + ρ2(b− a) + ρ1(b− a)− ρ1(a + b))

=
1

2
((ρ2 − ρ1)(a + b) + (ρ1 + ρ2)(b− a)).
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Hence,

1

2

[
(ρ2 − ρ1)

(
∂(φ1 + φ2)

∂t


e
− Re{q̄sheet(q1 + q2)}

)
+

1

2
(q1q̄1 + q2q̄2)

+ (ρ1 + ρ2)
(

∂(φ2−φ1)
∂t


e
− Re{q̄sheet(q2 − q1)}+ 1

2
(q2q̄2 − q1q̄1)

)]

+ p2 − p1 + (ρ2 − ρ1)gy = 0.

(4.53)

Denote

Φ =
φ1(e, t) + φ2(e, t)

2
, µ(e, t) = φ2(e, t)− φ1(e, t)

where Φ is the average value and µ is the jump of the potential across the interface.

We can also interpret µ as the strength of the dipole layer distributed along the

interface (see Baker, Meiron & Orszag [6]).

In “q”-notation, the expressions for the vortex sheet velocity (4.43) and the

unnormalized vortex sheet strength (4.42) become

q̄sheet =
q̄1 + q̄2

2
, and γ = (q̄2 − q̄1)ze.

Then q̄1 and q̄2 may be expressed in terms of qsheet as

q̄1 = q̄sheet − γ

2ze

, (4.54)

q̄2 = q̄sheet +
γ

2ze

. (4.55)

Dividing equation (4.53) by ρ1 + ρ2 and using there relations (4.54), (4.55)

together with the definitions for µ, Φ, and the Atwood ratio α = ρ2−ρ1

ρ1+ρ2
, we get

1

2

[
α

(
2
∂Φ

∂t


e
− qq̄ +

γ2

4zez̄e

)
+

∂µ

∂t


e

]
+ p2 − p1 + αgy = 0. (4.56)

Differentiate equation (4.56) with respect to e and use the relation between the

unnormalized vortex sheet strength γ and the dipole strength µ (see Baker, Meiron

& Orszag [6])

γ =
∂µ

∂e
,



132

to obtain

2α

[
Re

{
∂q̄

∂t
ze

}
+

1

8

∂

∂e

{
γ2

zez̄e

}
+ gye

]
+

∂γ

∂t


e
− 2

σ0κe

ρ1 + ρ2

= 0,

where we used the Young-Laplace equation for the pressure difference across the

interface, i.e. p2 − p1 = −σ0κ, σ0 being surface tension coefficient, κ = xeye−xeye

(x2
e+y2

e)
3/2 .

Therefore,

∂γ

∂t


e
= −2α

[
Re

{
∂q̄

∂t
ze

}
+

1

8

∂

∂e

{
γ2

zez̄e

}
+ gye

]
+ 2

σ0κe

ρ1 + ρ2

. (4.57)

This is a desired evolution equation for γ in dimensional variables.

In view of the fact that the velocity of the vortex sheet may be expressed as

a Birkhoff-Rott type integro-differential equation, it follows that equation (4.57) is a

Fredholm integral equation of the second kind.

Equation (4.57) and various other slightly different forms have been derived

and rederived by many investigators. See, for example, Zaroodny & Greenberg [93],

Tryggvason [90]; Zalosh [92] (and the correction by Rottman & Olfe [78], Glimm et

al [33]).



CHAPTER 5

CONCLUSIONS

The nonlinear flow is studied which results when two immiscible inviscid

incompressible fluids of different densities and separated by an interface which is

free to move and which supports surface tension, are caused to flow in a straight

infinite channel. Gravity is taken into consideration and the velocities of each phase

can be different, thus giving rise to the Kelvin-Helmholtz instability. The competing

effects of the Kelvin-Helmholtz instability coupled with a stably or unstably stratified

fluid system (Rayleigh-Taylor instability) when surface tension is present to regularize

the dynamics, are investigated. The approach involves the derivation of two- and

three-dimensional model evolution equations using long-wave asymptotics and the

ensuing analysis and computation of these models. The appropriate Birkhoff-Rott

integro-differential equation for two-phase inviscid flows in channels of arbitrary

aspect ratios is also derived.

A long wave asymptotic analysis is undertaken to develop a theory for fully

nonlinear interfacial waves allowing amplitudes as large as the channel thickness.

The result is a set of evolution equations for the interfacial shape and the velocity

jump across the interface. Linear stability analysis reveals that capillary forces

stabilize short-wave disturbances in a dispersive manner and the effect of surface

tension on the fully nonlinear dynamics described by our models is studied. In the

case of two-dimensional interfacial deflections, traveling waves of permanent form are

constructed and it is shown that solitary waves are possible for a range of physical

parameters. All solitary waves are expressed implicitly in terms of incomplete elliptic

integrals of the third kind. When the upper layer has zero density, two explicit

solitary-wave solutions have been found whose amplitudes are equal to h/4 or h/9

where 2h is the channel thickness. In the absence of gravity, solitary waves are not
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possible but periodic ones are. Numerically constructed traveling and solitary waves

are given for representative physical parameters. The initial value problem for the

partial differential equations is also addressed numerically in periodic domains, and

the regularizing effect of surface tension is investigated. An explicit pseudo-spectral

scheme is used in numerical analysis. The system of evolution equations has three

conserved quantities, corresponding to mass, total circulation and energy. These

constants of motion are used as a check on the accuracy of computational solutions.

It is shown that the system of governing equations terminates in infinite slope

singularities. This is achieved by studying a 2 × 2 system of nonlinear conservation

laws in the complex plane and by numerical solution of the evolution equations. This

analysis shows that a sinusoidal perturbation of the flat interface and a cosinusoidal

perturbation to the unit velocity jump across causes the interface to develop a

singularity at time tc = ln 1
ε

+ O
(
ln(ln 1

ε
)
)

where ε is the initial amplitude of the

disturbances. This result is asymptotic for small ε and is derived by studying the

asymptotic form of the flow characteristics in the complex plane.

The problem under consideration is generalized to the three-dimensional case,

where two fluids with different density and velocities bounded between two infinite

horizontal plates are considered. Three-dimensional long-wave model equations are

derived by assuming that the wavelengths in the principal horizontal directions are

large compared to the channel thickness. Surface tension is again incorporated to

regularize short-wave Kelvin-Helmholtz instabilities and the equations are solved

numerically subject to periodic boundary conditions. Evidence of singularity

formation is found. In particular, it is observed that singularities occur at isolated

points starting from general initial conditions. This finding is consistent with

numerical studies of unbounded three-dimensional vortex sheets, in particular, with

the results by Hou & Hu [40]. Integral invariants of motion that correspond to mass,
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total circulation in the principal horizontal directions, and energy provided a useful

accuracy check for the numerics.

The vortex-sheet formulation of the exact nonlinear two-dimensional motion

of the interface is developed for the case when the vortex sheet is bounded by the

channel walls. The model includes a Birkhoff-Rott type integro-differential evolution

equation for the velocity of the interface in terms of the vorticity as well as the

evolution equation for the unnormalized vortex sheet strength. For the case of a

periodic vortex sheet, this Birkhoff-Rott type equation is written in terms of Jacobi’s

functions. The equation is shown to recover the limits of unbounded and non-periodic

flows which are known in the literature.



APPENDIX A

GENERAL PROBLEM FORMULATION

We consider a system of two incompressible, inviscid and immiscible fluids which are

bounded between two parallel infinite plates. Denote the upper and lower fluids by

subscripts 1 and 2, respectively. In dimensional variables, the height of the upper

and lower walls of the channel are h1 and h2, respectively. The densities are assumed

to be ρ1 and ρ2. Cartesian coordinates (x, y, z) will be used with the undisturbed

interface at z = 0. At later times, the deformed interface is given by the function

z = S(x, y, t). The geometry of the problem is given in Figure 3.1.

The velocity components in Cartesian coordinates are denoted by (ui, vi, wi)

and the pressure by pi; the governing equations are the continuity equation and the

Euler equations in each layer Ωi,

∇~ui + wiz = 0, (A.1)

uit
+ ~ui · ∇ui + wiuiz = − 1

ρi

pix, (A.2)

vit
+ ~ui · ∇vi + wiviz = − 1

ρi

piy, (A.3)

uit
+ ~ui · ∇ui + wiuiz = − 1

ρi

piz − g (A.4)

where ~ui = (ui, vi), ∇ = (∂x, ∂y), the subscripts x, y, z, and t mean partial

differentiations with respect to x, y, z, and t, respectively, and g is the gravitational

acceleration.

One of the boundary conditions at the interface z = S(x, y, t) is the continuity

of the normal component of velocity. This condition is called a kinematic condition

and it reflects the fact that the boundary between the two fluids is a material surface.

In other words, a particle of the interface stays on it during the course of its evolution

(see, for example, [2] p. 65). i.e., two fluids cannot occupy the same point at the
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same time and a cavity cannot be formed between two fluids [30]. The equation of

the interface may be written as F (x, y, z, t) = z − S(x, y, t) = 0. Then the kinematic

condition implies DF
Dt

= 0 on the interface, where the operator D
Dt

, called the material

derivative, is given by

D

Dt
= ∂t + u∂x + v∂y + w∂z.

Therefore, we have

−St + ui(−Sx) + vi(−Sy) + wi · 1 = 0 on z = S±(x, y, t)

or

St + uiSx + viSy = wi on z = S±(x, y, t), (A.5)

with S± being values of the function z = S(x, y, t) immediately above and below the

interface.

Another condition at the interface is the continuity of the normal component

of the stress with allowance for the effect of surface tension (this condition is called

the dynamic condition [7]). The difference between the values of the stress on two

surface elements parallel to the boundary and immediately on either side of it, is a

normal force due wholly to surface tension. The total stress Ti = (σkj
i )3

k,j=1, i = 1, 2,

can be written as

σkj
i = −piδ

kj + 2µi(e
kj
i − 1

3
∆iδ

kj)

where

ekj
i =

1

2

(
∂uk

i

∂xj

+
∂uj

i

∂xk

)
and ∆i = ekk

i ,

with µi, i = 1, 2, being the viscosity of the lower/upper fluid, respectively; δkj the

Kronecker delta symbol

δkj =





1, k = j,

0, k 6= j.
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Here we derive the dynamic condition in the general case when the fluids are viscous

and then set µi = 0, since we restrict our attention to inviscid fluids.

Denote by ~n, the outward normal to the interface, and ~t(1), ~t(2) mutually

orthogonal vectors in the plane tangent to the surface. For the component of the

surface tension normal to the interface (in the direction ~n) we have

[~n · Ti · ~n]12 = −σ0κ, (A.6)

whereas tangential components (in directions ~t(1) and ~t(2), respectively) are

[~t(1) · Ti · ~n]12 = 0, (A.7)

[~t(2) · Ti · ~n]12 = 0, (A.8)

where κ = − div ~n is the curvature of the interface; [ ]12 denotes the jump between

side 1 and side 2, that is, the value on side 1 minus the value on side 2.

Rewrite equations (A.6)-(A.8) in terms of components of the stress tensor σkj
i .

~n · Ti · ~n = ( n1 n2 n3 )




σ11
i σ12

i σ13
i

σ21
i σ22

i σ23
i

σ31
i σ32

i σ33
i







n1

n2

n3




= nkσkj
i nj.

Then

[~n · Ti · ~n]12 = nkσkj
1 nj − nkσkj

2 nj =
(
−p1δ

kj + 2µ1(e
kj
1 − 1

3
∆1δ

kj)
)

nknj

−
(
−p2δ

kj + 2µ2(e
kj
2 − 1

3
∆⊥δkj)

)
nknj = −p1 + 2µ1(e

kj
1 nknj

− 1

3
∆1)−

(
−p2 + 2µ2(e

kj
2 nknj − 1

3
∆⊥)

)
= p2 − p1.

In the last equality, we used the fact that in our problem both fluids are inviscid and

we can set µi = 0, i = 1, 2. Therefore, equation (A.6) simplifies to

p2 − p1 = −σ0κ (A.9)
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giving the dynamic condition at the free surface z = S(x, y, t). Similarly, for the

tangential components of the stress in the directions ~t(l), l = 1, 2, we have

0 = [~t(l) · Ti · ~n]12 = t(l)kσkj
1 nj − t(l)kσkj

2 nj =
(
−p1δ

kj + 2µ1(e
kj
1 − 1

3
∆1δ

kj)
)

∗ t(l)knj −
(
−p2δ

kj + 2µ2(e
kj
2 − 1

3
∆⊥δkj)

)
t(l)knj

= −p1t
(l)knk + 2µ1(e

kj
1 t(l)knj − 1

3
∆1t

(l)knk)

−
(
−p2t

(l)knk + 2µ2(e
kj
2 t(l)knj − 1

3
∆⊥t(l)knk)

)
.

Since ~n⊥~t(l), it follows that t(l)knk = 0 and hence,

0 = [~t(l) · Ti · ~n]12 = 2µ1e
kj
1 t(l)knj − 2µ2e

kj
2 t(l)knj.

For inviscid fluids, the above equation is satisfied automatically since µ1 = µ2 = 0,

therefore, the same is true for equations (A.7) and (A.8).

The upper and lower rigid surfaces are assumed to be impermeable, therefore,

the normal component of the velocity is zero there, i.e.

w1(x, y, z, t) = 0 at z = h1 (A.10)

and

w2(x, y, z, t) = 0 at z = −h2. (A.11)

We assume that the flow is irrotational away from the interface and we can

introduce the potential functions φi, i = 1, 2, for the lower and upper fluids,

respectively, such that

ui = φix, vi = φiy, wi = φiz. (A.12)

In terms of the potential functions φi, i = 1, 2, the continuity equation (A.1) becomes

(∆ + ∂zz) φi = 0 (A.13)
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where ∆ = ∂xx + ∂yy.

The momentum equation in the x-direction (A.2) can be written as

{
φit +

1

2

(
φix

)2
+

1

2

(
φiy

)2
+

1

2

(
φiz

)2
+

1

ρ i

pi

}

x

= 0. (A.14)

Similarly, equations (A.3) and (A.4) may be written as

{
φit +

1

2

(
φix

)2
+

1

2

(
φiy

)2
+

1

2

(
φiz

)2
+

1

ρ i

pi

}

y

= 0, (A.15)

{
φit +

1

2

(
φix

)2
+

1

2

(
φiy

)2
+

1

2

(
φiz

)2
+

1

ρ i

pi + gz

}

z

= 0. (A.16)

After integration, equations (A.14)-(A.16) give

φit +
1

2

(
φix

)2
+

1

2

(
φiy

)2
+

1

2

(
φiz

)2
+

1

ρ i

pi = −gz + Ci(t) (A.17)

where Ci(t), i = 1, 2, are arbitrary functions of time t. Function Ci(t) can be absorbed

into φi without changing the velocities if we introduce new potential functions

φ̃i = φi −
∫ t

Ci(τ)dτ,

and then drop tildes in the modified equations. Therefore the momentum equation

(A.17) becomes

φit +
1

2

(
φix

)2
+

1

2

(
φiy

)2
+

1

2

(
φiz

)2
+

1

ρ i

pi = −gz. (A.18)

The boundary conditions on the rigid plates are

φ1z = 0 at z = h1, (A.19)

and

φ2z = 0 at z = −h2. (A.20)

The kinematic condition evaluated from the upper side of the interface becomes

φ1z = St + (∇φ1 · ∇S) on z = S+(~x, t), (A.21)
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and similarly, that from the lower side gives

φ2z = St + (∇φ2 · ∇S) on z = S−(~x, t). (A.22)

The curvature κ of the interface F (x, y, z, t) = z − S(x, y, t) = 0 is

κ = − div ~n, where ~n =
grad F

| grad F | =
(−Sx,−Sy, 1)

(S2
x + S2

y + 1)1/2
,

and written out in full becomes

κ =
1

[1 + S2
x + S2

y ]
3/2

(
Sxx + S2

ySxx + Syy + S2
xSyy − 2SxSySxy

)
.

Hence, the dynamic condition (A.9) at the free surface becomes is

p2 − p1 = − σ0

[1 + S2
x + S2

y ]
3/2

(
Sxx + S2

ySxx + Syy

+ S2
xSyy − 2SxSySxy

)
at z = S(x, y, t). (A.23)

Multiply equation (A.17) with i = 1 by ρ1, equation (A.17) with i = 2 by ρ2

and subtract the resulting equations to obtain

ρ1 [φ1t +
1

2

(
φ1x

)2
+

1

2

(
φ1y

)2
+

1

2

(
φ1z

)2
+ gz

]
− ρ2 [φ2t

+
1

2

(
φ2x

)2
+

1

2

(
φ2y

)2
+

1

2

(
φ2z

)2
+ gz

]
= p2 − p1.

Now use relation (A.23) for the pressure difference across the interface to get the

following Bernoulli equation

ρ1

[
φ1t +

1

2
(∆ + ∂zz) φ1 + gz

]
− ρ2

[
φ2t +

1

2
(∆ + ∂zz) φ2 + gz

]

= − σ0

[1 + S2
x + S2

y ]
3/2

(
Sxx + S2

ySxx + Syy + S2
xSyy − 2SxSySxy

)
. (A.24)

The resulting problem consists of equation (A.13) subject to boundary

conditions (A.19), (A.20), (A.21), (A.22) and (A.24).



APPENDIX B

DETAILS OF THE DERIVATION OF (2.58)

Here we provide a derivation of (2.58), which is central in the construction of nonlinear

travelling waves. Multiplication of (2.58) by S ′ and integration gives the following

equation:

−c
∫

W (1− αS)dS − α
∫

(1 + S2)W 2dS + 2
∫

SW 2dS

=
α

2F
S2 − 1

2
γS2

x + BS + D (B.1)

where B and D are the same constants appearing in (2.58). Making use of the

expression (2.56) for W , we have the following results:

−c
∫

W (1− αS)dS =
c

2

{
cαS − (c + A)(1− α)

2
ln |1− S|

− (c− A)(1 + α)

2
ln |1 + S|

}
, (B.2)

∫
W 2(−αS2 + 2S − α)dS = −α

4
c2S +

L1

4

∫ dS

1− S
+

L2

4

∫ dS

(1− S)2

+
L3

4

∫ dS

1 + S
+

L4

4

∫ dS

(1 + S)2
, (B.3)

where

L1 = c(A + c)(α− 1), L2 =
1

2
(1− α)(A + c)2,

L3 = c(1 + α)(c− A), L4 = −1

2
(1 + α)(A− c)2.

The integrals in (B.2) can be obtained analytically by elementary methods.

Combining the results described above, it is found that the logarithmic terms cancel

leaving equation (2.58) as the final expression.
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APPENDIX C

ELLIPTIC FUNCTIONS

In this chapter, we give some necessary definitions, relations and properties of

Legendre’s Elliptic Integrals, Jacobi’s Elliptic Functions and Jacobi’s Z, Π, Θ

and H Functions. Material presented here is based on works by Cayley [18] and

Milne-Thomson in [1], Chapters 16 and 17.

Let R(x) be a rational function of x and X a rational and integral quartic

function of x with real coefficients. The integral

∫ Rdx√
X

(C.1)

is called an elliptic integral. The values of x are real, and such that X is positive,

or
√

X real. The rational function R is the sum of an even function and an odd

function of x. The odd part of the differential expression in (C.1) may be integrated

by circular and logarithmic functions. There still remains to consider the part when

R is even. Thus we may take R to be an even rational function of x.

By a real substitution [18], we can transform the differential expression in (C.1)

into the form

Rdx√
(1− x2)(1− k2x2)

, (C.2)

where 0 < x < 1 and 0 < k < 1. By decomposing R into an integral and fractional

part, and the fractional part into simple fractions, and by integrating by parts, the

integration is made to depend upon that of the three terms

dx√
(1− x2)(1− k2x2)

,
x2dx√

(1− x2)(1− k2x2)
,

dx√
(1 + nx2)(1− x2)(1− k2x2)

,

where n is real or imaginary.
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Writing the substitution x = sin φ, we can introduce the three kinds of Elliptic

Integrals: viz. these are

F (k, φ) =
∫ φ

0

dθ√
1− k2 sin2 θ

First Kind, (C.3)

E(k, φ) =
∫ φ

0

√
1− k2 sin2 θ Second Kind, (C.4)

Π(k, φ) =
∫ φ

0

dθ

(1 + n sin2 θ)
√

1− k2 sin2 θ
Third Kind. (C.5)

In the above integrals, φ is called the amplitude, k the modulus, n the parameter. The

amplitude is a real angle, the modulus k, as already mentioned, is positive and less

than 1; whence also k′ =
√

1− k2, called the complimentary modulus, is real, positive

and less then 1.

Instead of the complete notation F (k, φ), we frequently express only the

amplitude φ, and write simply Fφ and similar Eφ, etc. if it is understood what

the unexpressed letters k, or k and n, are.

We have spoken of φ as the amplitude of Fφ. Denote ∆φ = 1−k2 sin2 θ. Writing

Fφ = u, then φ is the amplitude of u, say φ = am u, and then sin φ, cos φ, ∆φ are the

sine, cosine and delta of am u, which may be written as sin am u, cos am u, ∆ am u or

in abbreviated form as

sn u, cn u dn u.

Functions sn u, cn u and dn u are sorts of cosine-functions of u. They are called

Elliptic Functions. Some of their properties are

cn2u = 1− sn2u, dn2u = 1− k2 sn2u,

d

du
cn u = − sn u dn u,

d

du
dn u = −k2 sn u cn u,

d

du
sn u = cn u dn u.

These five equations constitute a foundation of the theory. We also observe that

sn 0 = 0, cn 0 = 1, dn 0 = 1
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and

sn(−u) = − sn u, cn(−u) = − cn u, dn(−u) = − dn u,

the last three equations imply that functions sn u, cn u and dn u are odd functions

of u. Moreover, as k = 0 or k = 1, the elliptic functions reduce to trigonometric

functions, viz.

sn(u, 0) = sin u, sn(u, 1) = tanh u,

cn(u, 0) = cos u, cn(u, 1) = sech u,

dn(u, 0) = 1, dn(u, 1) = sech u.

Elliptic functions sn u, cn u and dn u satisfy the following addition equations.

sn(u± v) =
sn u cn v dn v ± sn v cn u dn u

1− k2 sn2 u sn2 v
,

cn(u± v) =
cn u cn v ∓ sn u dn u sn v dn v

1− k2 sn2 u sn2 v
,

dn(u± v) =
dn u dn v ∓ k2 sn u cn u sn v cn v

1− k2 sn2 u sn2 v
.

The integrals, taken up to the value φ = π/2 of the amplitude are said to have

their complete value. We will denote these by F (k, π/2) = F1k or simply F1, and so

on E1k, E1 etc. The complete function F1 is also denoted by

K =
∫ π/2

0

dφ√
1− k2 sin2 φ

=
∫ 1

0

dx√
(1− x2)(1− k2x2)

,

where K is a function of k, moreover sn K = 1, cn K = 0, dn K = k′. It should be

noted that functions sn u, cn u and dn u have a real period 4K.

The form of the integral suggests the consideration of another complex quantity

∫ 1/k

0

dx√
(1− x2)(1− k2x2)

=
∫ 1

0

dx√
(1− x2)(1− k2x2)

+ i
∫ 1

0

dx√
(1− x2)(1− k′2x2)

= K + iK ′,
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where K ′ being the same function of the complimentary modulus k′ as K is of k. The

elliptic functions sn u, cn u and dn u satisfy equations

sn(K + iK ′) =
1

k′
, cn(K + iK ′) =

ik′

k
, dn(K + iK ′) = 0,

from which we deduce that another period is 4iK ′. Therefore, the elliptic functions

are doubly periodic. More specifically, the function sn u has periods 2iK ′, 4K +4iK ′,

4K; function cn u has periods 4iK ′, 2K + 2iK ′, 4K; finally, the function dn u has

periods 4iK ′, 4K + 4iK ′ and 2K.

By introducing u as the argument if the integrals of the second (C.4) and third

(C.5) kinds, we obtain

E(k, φ) ≡ E(k, u) =
∫

0
(1− k2 sn2u)du,

Π(n, k, φ) ≡ Π(n, k, u) =
∫

0

du

1 + n sn2u
.

In place of the integral of the second kind Jacobi considers a function

Zu = u
(
1− E

K

)
− k2

∫

0
sn2udu,

where E, K denote the complete functions E1k, F1k respectively. The complete

expression is Z(k, u), thus, Zu is a functions of k.

From the function sn u we derive a new function Θu by the equation

Θu =

√
2Kk′

π
e

1
2
u2(1− E

K )−k2
∫
0

du
∫
0
sn2 udu

or using the function Zu, we may write

Θu =

√
2k′K

π
e
∫
0

Z(u,k)du .

This may be regarded as one of four functions Θu, Θ(u+K), Θ(u+ iK ′), Θ(u+K +

iK ′). Writing

Hu = −i e
iπ
2K

(u+ 1
2
iK′) Θ(u + iK ′),
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the functions may be taken to be Θu, Θ(u + K), Hu, H(u + K).

The function Zu may be expressed in terms of Θu and its derivative d
du

Θu ≡ Θ′u

as

Zu =
Θ′u
Θu

.

The elliptic functions sn u, cn u, dn u may be written in terms of Jacobi’s functions

Θu, Θ(u + K), Hu, H(u + K) as

sn u =
1√
k

Hu

Θu
, cn u =

√
k′

k

H(u + K)

Θu
, dn u =

√
k′

Θ(u + K)

Θu
.

It may be remarked here that the functions H, Θ are not doubly periodic.

The functions H, Θ may be expressed in terms of doubly infinite products, viz.

writing for shortness

(m,m′) = 2mK + 2m′iK ′,

(m̄,m′) = (2m + 1)K + 2m′iK ′,

(m, m̄′) = 2mK + (2m′ + 1)iK ′,

(m̄, m̄′) = (2m + 1)K + (2m′ + 1)iK ′.

Then, we have

Hu =
√

k

√
2k′K

π
u

∏

m,m′

{
1 +

u

(m,m′)

}
,

H(u + K) =

√
2k′K

π

∏

m,m′

{
1 +

u

(m̄,m′)

}
,

Θu =

√
2k′K

π

∏

m,m′

{
1 +

u

(m, m̄′)

}
,

Θ(u + K) =

√
2k′K

π

∏

m,m′

{
1 +

u

(m̄, m̄′)

}
, (C.6)

where (except that in the first product the simultaneous values m = 0, m′ = 0 are

to be omitted) m, m′ have all positive or negative integer values, including zero, but

under the following condition, viz. taking µ, µ′ to denote each of them an indefinitely
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large positive integer, µ being also indefinitely large in comparison with µ′, so that

µ′/µ = 0, then for m the limits are m = −µ to +µ; for m′ the limits are m = −µ′ to

+µ′; for m̄ the limits are m = −µ − 1 to +µ; for m the limits are m̄′ = −µ′ + 1 to

+µ′.

Consider the expression K′
K

. It is convenient to notice (see also Figure C.1) the

following limiting values for k, k′, K and K ′

Figure C.1 Dependence of K′
K

on k. Taken from Cayley [18], p.44.

k = 0, k′ = 1, K =
π

2
, K ′ = ∞,

K ′

K
= ∞,

k = 1, k′ = 0, K = ∞, K ′ =
π

2
,

K ′

K
= 0,

i.e., as k increases from 0 to 1, K′
K

diminishes from ∞ to 0.

There is no proper addition-equation for the functions H, Θ. The nearest

analogue is the system of equations

Θ(u + v)Θ(u− v) =
Θ2uΘ2v −H2uH2v

Θ20
,
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H(u + v)H(u− v) =
H2Θ2v −Θ2uH2v

Θ20
,

where Θ0 =
√

2k′K
π

.

However, there is the addition-equation for the function Zu, viz.

Zu + Zv − Z(u + v) = k2 sn u sn v sn(u + v).

Finally, we give some values of the Zu function for certain values of the

arguments.

Z(0, k) = 0, Z(K, k) = 0, Z(2iK ′, k) = − iπ
K

, Z(iK ′, k) = ∞,

Z(u, 1) = tanh u, Z(u, 0) = 0, Z(−u, k) = −Z(u, k).



APPENDIX D

SOKHOTSKI-PLEMELJ FORMULAE

In this chapter, we present Sohotskij-Plemelj Formulae used in the derivation of a

Birkhoff-Rott type integro-differential equation in Section 4.1.

Consider the integral

F (z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ (D.1)

where C is a smooth curve (C may be an arc or a closed contour), function f(z)

defined on C and continuous everywhere except possibly at a finite number of points

where it has an integrable discontinuity. The integral (D.1) is called the Cauchy type

integral. Let the function f(ζ) satisfy the Hölder condition on C, that is for any two

points ζ and ζ1 of C

|f(ζ)− f(ζ1)| ≤ Λ|ζ − ζ1|λ, Λ > 0, 0 < λ ≤ 1.

The integral (D.1) is well defined and F (z) is analytic provided that z is not on C.

However, if z is on C, this integral becomes ambiguous. To give it a unique meaning

we have to define how z approaches C. We denote by + the region that is on the left

of the positive direction of C and by − the region on the right (see Figure D.1). Then,

as the next theorem shows, F (z) has a limit F+(ζ0), ζ0 on C, when z approaches C

along a curve entirely in the + region. Similarly, F (z) has a limit F−(ζ0), when z

approaches C along a curve entirely in the − region. These limits are given by so

called Sokhotski-Plemelj Formulae.

Theorem (Sokhotski-Plemelj Formulae) Let C be a smooth contour (closed or

open) and let f(z) satisfy a Hölder condition on C. The Cauchy type integral F (z),

defined in (D.1), has the limiting values F+(ζ0) and F−(ζ0) as z approaches C from
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−
C

+

Figure D.1 Regions on either side of C.

the left and the right, respectively, and ζ0 is not an endpoint of C. These limiting

values are given by

F+(ζ0) = F (ζ0) +
1

2
f(ζ0), (D.2)

F−(ζ0) = F (ζ0)− 1

2
f(ζ0) (D.3)

where

F (ζ0) =
1

2πi
−
∫

C

f(ζ)

ζ − ζ0

dζ. (D.4)

In equation (D.4), −
∫

denotes the principal value integral defined by

−
∫

C

f(ζ)

ζ − ζ0

dζ = lim
ε→0

∫

C\Cε

f(ζ)

ζ − ζ0

dζ (D.5)

where Cε is the portion of the curve C contained within a small circle of radius ε,

centered on ζ0, as depicted in Figure D.2.

ζ

ε

C

0ζ

Cε

Figure D.2 Neighborhood of point ζ0 on C.

Formulae (D.2), (D.3) were first proved by Sokhotski in 1873, then by Plemelj

in 1908, and finally under more general assumptions by Privalov in 1918 [55].
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Yu. Tsĕıtlin], Translated from the Russian.

[35] Greengard, L. Potential flow in channels. SIAM J. Sci. Statist. Comput. 11, 4
(1990), 603–620.

[36] Harlow, F., and Welch, J. Numerical study of large-amplitude free-surface
motions. Phys.Fluids 9 (1966), 842–851.

[37] Helfrich, K. R., Melville, W. K., and Miles, J. W. On interfacial solitary
waves over slowly varying topography. J. Fluid Mech. 149 (1984), 305–317.

[38] Hirt, C., Cook, J., and Butler, T. A lagrangian method for calculating the
dynamics of an incompressible fluid with free surface. J. Comp. Phys. 5 (1970),
103–124.

[39] Hogan, S. Some effects of surface tension on steep water waves. J. Fluid Mech. 91,
1 (1979), 167–180.

[40] Hou, T., and Hu, G. Singularity formation in three-dimensional vortex sheets.
Phys. Fluids 15, 1 (2003), 147–172.

[41] Hou, T. Y., Lowengrub, J. S., and Shelley, M. J. Removing the stiffness from
interfacial flows with surface tension. J. Comput. Phys. 114, 2 (1994), 312–338.

[42] Hou, T. Y., Lowengrub, J. S., and Shelley, M. J. Boundary integral methods
for multicomponent fluids and multiphase materials. J. Comput. Phys. 169, 2
(2001), 302–362.

[43] Hunter, J. K., and Vanden-Broeck, J.-M. Solitary and periodic gravity—
capillary waves of finite amplitude. J. Fluid Mech. 134 (1983), 205–219.



155

[44] Ishihara, T., and Kaneda, Y. Spontaneous singularity formation in the shape of
vortex sheet in three-dimensional flow. J. Phys. Soc. Japan 63 (1994), 388–392.

[45] Ishihara, T., and Kaneda, Y. Singularity formation in three-dimensional motion
of a vortex sheet. J. Fluid Mech. 300 (1995), 339–366.

[46] Joseph, R. I. Solitary waves in a finite depth fluid. J. Phys. A 10, 12 (1977),
225–227.

[47] Kakutani, T., and Yamasaki, N. Solitary waves on a two-layer fluid. J. Phys.
Soc. Japan 45 (1978), 674–679.

[48] Kang, Y., and Vanden-Broeck, J.-M. Gravity-capillary waves in the presence
of constant vorticity. Eur. J. Mech. B Fluids 19, 2 (2000), 253–268.

[49] Kelvin, L. Mathematical and Physical Papers, vol. 4. Cambridge University Press,
Cambridge, 1910.

[50] Kinnersley, W. Exact large amplitude capillary waves on sheets of fluid. J. Fluid
Mech. 77, 2 (1976), 229–241.

[51] Koop, C. G., and Butler, G. An investigation of internal solitary waves in a
two-fluid system. J. Fluid Mech. 112 (1981), 225–251.

[52] Korn, G. A., and Korn, T. M. Mathematical handbook for scientists and
engineers. Second, enlarged and revised edition. McGraw-Hill Book Co., New
York, 1968.

[53] Krasny, R. A study of singularity formation in a vortex sheet by the point-vortex
approximation. J. Fluid Mech. 167 (1986), 65–93.

[54] Kubota, T., Ko, D., and Dobbs, L. Weakly-nonlinear, long internal gravity
waves in stratified fluids of finite depth. J. Hydronautics 12 (1978), 157–165.

[55] Lavrent’ev, M., and Shabat, B. Metody teorii funktsiy kompleksnogo
peremennogo. Gosudarstvennoe izdatel’stvo fiziko-matematicheskoj literatury,
Moscow, 1958. (in Russian). Part I only translated into Spanish; Part II is: B.V.
Shabat, Introduction to complex analysis. Part II. Functions of several variables,
Translations of Mathematical Monographs, 110, AMS, Providence, RI, 1992.

[56] Lax, P. D. Development of singularities of solutions of nonlinear hyperbolic partial
differential equations. J. Math. Phys. 5 (1964), 611–613.

[57] Liska, R., Margolin, L., and Wendroff, B. Nonhydrostatic two-layer models
of incompressible flow. Comput. Math. Appl. 29, 9 (1995), 25–37.

[58] Logan, J. D. An introduction to nonlinear partial differential equations. Pure
and Applied Mathematics. John Wiley & Sons Inc., New York, 1994. A Wiley-
Interscience Publication.



156

[59] Longuet-Higgins, M. S. Integral properties of periodic gravity waves of finite
amplitude. Proc. Roy. Soc. London Ser. A 342 (1975), 157–174.

[60] Longuet-Higgins, M. S., and Cokelet, E. D. The deformation of steep surface
waves on water. I. A numerical method of computation. Proc. Roy. Soc. London
Ser. A 350, 1660 (1976), 1–26.

[61] Markushevich, A. I. Theory of functions of a complex variable. Vol. I, II, III,
english ed. Chelsea Publishing Co., New York, 1977. Translated and edited by
Richard A. Silverman.

[62] Matsuno, Y. A unified theory of nonlinear wave propagation in two-layer fluid
systems. J. Phys. Soc. Japan 62, 6 (1993), 1902–1916.

[63] Meiron, D. I., Baker, G. R., and Orszag, S. A. Analytic structure of vortex
sheet dynamics. I. Kelvin-Helmholtz instability. J. Fluid Mech. 114 (1982), 283–
298.

[64] Miles, J. Solitary waves. Ann. Rev. Fluid Mech. 12 (1980), 11–43.

[65] Miles, J. W. On internal solitary waves. II. Tellus 33, 4 (1981), 397–401.

[66] Miura, R. M., Gardner, C. S., and Kruskal, M. D. Korteweg-de Vries
equation and generalizations. II. Existence of conservation laws and constants of
motion. J. Mathematical Phys. 9, 8 (1968), 1204–1209.

[67] Moore, D. W. The spontaneous appearance of a singularity in the shape of an
evolving vortex sheet. Proc. Roy. Soc. London Ser. A 365, 1720 (1979), 105–119.

[68] Moore, D. W. On the point vortex method. SIAM J. Sci. Statist. Comput. 2, 1
(1981), 65–84.

[69] Moore, D. W. Numerical and analytical aspects of Helmholtz instability. In
Theoretical and applied mechanics (Lyngby, 1984). North-Holland, Amsterdam,
1985, pp. 263–274.

[70] Ono, H. Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39, 4
(1975), 1082–1091.

[71] Papageorgiou, D. T., and Orellana, O. Study of cylindrical jet breakup using
one-dimensional approximations of the Euler equations. SIAM J. Appl. Math.
59, 1 (1999), 286–317 (electronic).

[72] Papageorgiou, D. T., and Smith, F. T. Nonlinear instability of the wake behind
a flat plate placed parallel to a uniform stream. Proc. Roy. Soc. London Ser. A
419, 1856 (1988), 1–28.

[73] Pullin, D. Numerical studies of surface-tension effects in nonlinear Kelvin-
Helmholtz and Rayleigh-Taylor instabilities. J. Fluid Mech. 119 (1982), 507–532.



157

[74] Rangel, R., and Sirignano, W. Nonlinear growth of Kelvin-Helmholtz
instability: Effect of surface tension and density ratio. Phys. Fluids A 31 (1988),
1845–1855.

[75] Roberts, A. A stable and accurate numerical method to calculate the motion of a
sharp interface between fluids. IMA J. Appl. Math. 31 (1983), 13–35.

[76] Rosales, R. R., and Papanicolaou, G. C. Gravity waves in a channel with a
rough bottom. Stud. Appl. Math. 68, 2 (1983), 89–102.

[77] Rosenhead, L. The formation of vortices from a surface of discontinuity. Proc. R.
Soc. London Ser. A 134 (1931), 170–192.

[78] Rottman, J., and Olfe, D. Comment on discretized simulations of vortex sheet
evolution with buoyancy and surface tension effects. AIAA J. 15 (1977), 1214–
1215.

[79] Saffman, P. Vortex dynamics. Cambridge University Press, Cambridge, 1992.

[80] Schwartz, L. Computer extension and analytic continuation of Stokes’ expansion
for gravity waves. J. Fluid Mech. 62 (1974), 553–578.

[81] Schwartz, L. W., and Vanden-Broeck, J.-M. Numerical solution of the exact
equations for capillary-gravity waves. J. Fluid Mech. 95, 1 (1979), 119–139.

[82] Shelley, M. A study of singularity formation in vortex-sheet motion by a spectrally
accurate vortex method. J. Fluid Mech. 244 (1992), 493–526.

[83] Siegel, M. An analytical and numerical study of singularity formation in the
Rayleigh-Taylor problem. Ph.D. Thesis, New York University, 1989.

[84] Siegel, M. A study of singularity formation in the Kelvin-Helmholtz instability
with surface tension. SIAM J. Appl. Math. 55, 4 (1995), 865–891.

[85] Stokes, G. On the theory of oscillatory waves. Camb. Trans. 8 (1847), 441–473.

[86] Sulem, C., Sulem, P., Bardos, C., and Frisch, U. Finite time analyticity
for the two and three dimensional Kelvin-Helmholtz instability. Commun. Math.
Phys. 80 (1981), 485–516.

[87] Tanaka, M. Nonlinear self-modulation of interfacial waves. J. Phys. Soc. Jpn. 51,
6 (1982), 2016–2023.

[88] Taylor, G. The instability of liquid surfaces when accelerated in a direction
perpendicular to their planes. I. Proc. Roy. Soc. London. Ser. A. 201 (1950),
192–196.

[89] Thorpe, S. Experiments on the instability of stratified shear flows: missible fluids.
Part 2. J. Fluid Mech. 46 (1971), 299–319.



158

[90] Tryggvason, G. Numerical simulation of the Rayleigh-Taylor instability. J. Comp.
Phys. 75 (1988), 253–282.

[91] Van Dyke, M. An Album of Fluid Motion. Parabolic Press, Stanford, California,
1982.

[92] Zalosh, R. Discretized simulation of vortex sheet evolution with buoyancy and
surface tension effects. AIAA J. 14 (1976), 1517–1523.

[93] Zaroodny, S., and Greenberg, M. On a vortex sheet approach to the numerical
calculation of water waves. J. Comp. Phys. 11 (1973), 440–446.


