3.5 Method of Undetermined Coefficients

Consider

$$
\begin{equation*}
P(D) y=R(x) \tag{3.1}
\end{equation*}
$$

The general solution is $y=y_{c}+y_{p}$ where y_{c} is the complementary function (with arbitrary constants) and $P(D) y_{c}=0 . y_{p}$ is the particular solution (with no arbitrary constants) and $P(D) y_{p}=R(x)$. Suppose that there is an operator (with constant coefficients) $A(D)$ called an annihilator such that $A(D) R(x)=0$. If we operate on both sides of (3.1) with $A(D)$ we get a higher order equation

$$
A(D) P(D) y=A(D) R(x)=0
$$

Consider this new higher order equation

$$
\begin{equation*}
A(D) P(D) y=0 \tag{3.2}
\end{equation*}
$$

To find the general solution of (3.2) we need the roots of the polynomial $P(D) A(D)$; they are $r_{1}, r_{2}, \ldots, r_{j}, q_{1}, q_{2}, \ldots, q_{k}$, where $r_{1}, r_{2}, \ldots, r_{j}$ are roots of $P(D)$ and $q_{1}, q_{2}, \ldots, q_{k}$ are the roots of $A(D)$. Thus the general solution of (3.2) is

$$
y=y_{c}+y_{q}
$$

where y_{c} is generated by the roots of $P(D)$ and y_{q} is generated by the roots of $A(D)$.

Note 1. $r_{1}, r_{2}, \ldots, r_{j}, q_{1}, q_{2}, \ldots, q_{k}$ are roots of a (single) polynomial $P(D) A(D)$, thus make sure that if one of the $q^{\prime} \mathrm{s}$ is a repeated root to treat it properly.

Note 2. The general solution of (3.1) is also "a" solution of (3.2)

$$
A(D) P(D)\left[y_{c}+y_{p}\right]=A(D) R(x)=0
$$

Thus, since $y_{c}+y_{p}$ is "a" solution of (3.2) and $y_{c}+y_{q}$ is "the general solution" of (3.2), $y_{c}+y_{p}$ must be contained in $y_{c}+y_{q}$, i.e.

$$
\left(y_{c}+y_{p}\right) \subset\left(y_{c}+y_{q}\right) \quad \text { or } \quad y_{p} \subset y_{q}
$$

We call y_{q} the "candidate" for the particular solutions and use the method of undetermined coefficients to evaluate the constants in y_{q} and thus find y_{p}.

EXAMPLE Find the candidate for y_{p}, the particular solution.

$$
\begin{aligned}
& y^{\prime \prime}-3 y^{\prime}+2 y=8 \cos 2 x+6 \mathrm{e}^{4 x} \\
& \left(D^{2}-3 D+2\right) y=8 \cos 2 x+6 \mathrm{e}^{4 x} \quad A(D)=\left(D^{2}+4\right)(D-4)
\end{aligned}
$$

the higher order DE is

$$
\left.\begin{array}{l}
P(D) \\
{[(D-1)(D-2)]\left[\left(D^{2}+4\right)(D-4)\right] y=0} \\
1, \quad 2 ; \quad \pm 2 i, \quad 4
\end{array}\right]=\underbrace{C_{1} \mathrm{e}^{x}+C_{2} \mathrm{e}^{2 x}}_{y_{c}}+\underbrace{K_{1} \cos 2 x+K_{2} \sin 2 x+K_{3} \mathrm{e}^{4 x}}_{y_{q}} .
$$

EXAMPLE

$$
\begin{aligned}
\left(D^{2}+1\right)(D-1)(D+4) y=10 \cos 4 x+6 x \mathrm{e}^{x}-12 \mathrm{e}^{-4 x} & \\
& A(D)=\left(D^{2}+16\right)(D-1)^{2}(D+4)
\end{aligned}
$$

the higher order DE is

$$
\begin{aligned}
& {\left[\left(D^{2}+1\right)(D-1)(D+4)\right]\left[\left(D^{2}+16\right)(D-1)^{2}(D+4)\right] y=0 } \\
& \pm i, \quad 1, \quad-4 ; \quad \pm 4 i, \quad 1,1, \quad-4 \\
& y= \underbrace{C_{1} \cos x+C_{2} \sin x+C_{3} \mathrm{e}^{x}+C_{4} \mathrm{e}^{-4 x}}_{y_{c}} \\
&+\underbrace{K_{1} \cos 4 x+K_{2} \sin 4 x+K_{3} x \mathrm{e}^{x}+K_{4} x^{2} \mathrm{e}^{x}+K_{5} x \mathrm{e}^{-4 x}}_{y_{q}}
\end{aligned}
$$

EXAMPLE

$$
\begin{aligned}
& D^{3}(D-1)^{2}\left(D^{2}+1\right) y=4 x-7 x^{2} \mathrm{e}^{x}+9 x^{2} \mathrm{e}^{-x}+3 \cos x \\
& \\
& A(D)=D^{2}(D-1)^{3}(D+1)^{3}\left(D^{2}+1\right)
\end{aligned}
$$

the higher order DE is

$$
\begin{aligned}
& {\left[D^{3}(D-1)^{2}\left(D^{2}+1\right)\right]\left[D^{2}(D-1)^{3}(D+1)^{3}\left(D^{2}+1\right)\right] y=0} \\
& 0,0,0,1,1 \quad \pm i ; \quad 0,0,1,1,1,-1,-1,-1, \pm i \\
& y=\underbrace{C_{1}+C_{2} x+C_{3} x^{2}+C_{4} \mathrm{e}^{x}+C_{5} x \mathrm{e}^{x}+C_{6} \cos x+C_{7} \sin x}_{y_{c}} \\
& \quad+K_{1} x^{3}+K_{2} x^{4}+K_{3} x^{2} \mathrm{e}^{x}+K_{3} x^{2} \mathrm{e}^{x}+K_{5} x^{4} \mathrm{e}^{x}+K_{6} \mathrm{e}^{-x} \\
& \quad \underbrace{+K_{7} x \mathrm{e}^{-x}+K_{8} x^{2} \mathrm{e}^{-x}+K_{9} x \cos x+K_{10} x \sin x}_{y_{q}}
\end{aligned}
$$

What do we do with y_{q} the candidate for y_{p} ? ANS Substitute into the DE and evaluate the K 's to obtain y_{p}.

EXAMPLE Solve

$$
\begin{array}{lc}
y^{\prime \prime}-3 y^{\prime}+2 y=x \mathrm{e}^{2 x}+\sin x & \text { with } \\
\left(D^{2}-3 D+0\right)=1.3 & y^{\prime}(0)=4.1 \\
& y=x \mathrm{e}^{2 x}+\sin x
\end{array} \quad A(D)=(D-2)^{2}\left(D^{2}+1\right) ~ \$ ~ \$
$$

the higher order DE is

$$
\begin{aligned}
& {[(D-1)(D-2)]\left[(D-2)^{2}\left(D^{2}+1\right)\right] y=0} \\
& \quad 1, \quad 2 ; \quad 2,2, \quad \pm i \\
& y=\underbrace{C_{1} \mathrm{e}^{x}+C_{2} \mathrm{e}^{2 x}}_{y_{c}}+\underbrace{K_{1} x \mathrm{e}^{x}+K_{2} x^{2} \mathrm{e}^{2 x}+K_{3} \cos x+K_{4} \sin x}_{y_{q}}
\end{aligned}
$$

TO FIND y_{p} we operate on y_{q} with $P(D)$ and set it equal to the functions on the right hand side.

$$
\left(D^{2}-3 D+2\right)\left[K_{1} x \mathrm{e}^{x}+K_{2} x^{2} \mathrm{e}^{2 x}+K_{3} \cos x+K_{4} \sin x\right]=x \mathrm{e}^{2 x}+\sin x
$$

$$
\left.\left.\begin{array}{|lllll}
\hline+2 & y_{q} & =K_{2} x^{2} \mathrm{e}^{2 x} & +K_{1} x \mathrm{e}^{2 x} & +K_{3} \cos x
\end{array}+K_{4} \sin x\right) x K_{1}\right) x \mathrm{e}^{2 x}+K_{1} \mathrm{e}^{2 x} \quad \begin{array}{llll}
& +K_{4} \cos x & -K_{3} \sin x \\
\cline { 1 - 1 } & y_{q}^{\prime}=2 K_{2} x^{2} \mathrm{e}^{2 x} & +\left(2 K_{2}+2 K_{1}\right. \\
\hline \hline+1 & y_{q}^{\prime \prime} & =4 K_{2} x^{2} \mathrm{e}^{2 x} & +\left(8 K_{2}+4 K_{1}\right) x \mathrm{e}^{2 x} \\
\hline
\end{array}
$$

$$
2 K_{2} x \mathrm{e}^{2 x}+\left(2 K_{2}+K_{1}\right) \mathrm{e}^{2 x}+\left(K_{3}-3 K_{4}\right) \cos x+\left(3 K_{3}+K_{4}\right) \sin x=x \mathrm{e}^{2 x}+\sin x
$$

We now equate the coefficients of $x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}, \cos x, \sin x$ on the left side with those on the right. Can we do this? YES. Why? The set $\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}, \cos x, \sin x\right\}$ is linearly independent.

$$
\begin{array}{ll}
2 K_{2}=1 & 2 K_{2}+K_{1}=0
\end{array} \quad K_{3}-3 K_{4}=0 \quad 3 K_{3}+K_{4}=1
$$

General solution

$$
\begin{aligned}
& y=\underbrace{C_{1} \mathrm{e}^{x}+C_{2} \mathrm{e}^{2 x}}_{\text {complementary function }}+\underbrace{\frac{1}{2} x^{2} \mathrm{e}^{2 x}-x \mathrm{e}^{2 x}+.1 \sin x+.3 \cos x}_{\text {particular solution }} \\
& y^{\prime}=C_{1} \mathrm{e}^{x}+2 C_{2} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x}+x^{2} \mathrm{e}^{2 x}-2 x \mathrm{e}^{2 x}-\mathrm{e}^{2 x}+.1 \cos x-.3 \sin x
\end{aligned}
$$

From initial conditions

$$
\begin{aligned}
& 1.3=C_{1}+C_{2}+.3 \\
& 4.1=C_{1}+2 C_{2}+.1-1 \\
& y=-3 \mathrm{e}^{x}+4 \mathrm{e}^{2 x}+\frac{1}{2} x^{2} \mathrm{e}^{2 x}-x \mathrm{e}^{2 x}+.1 \sin x+.3 \cos x
\end{aligned} \Rightarrow \begin{aligned}
& C_{1}=-3 \\
& C_{2}=4
\end{aligned}
$$

