NAME: __

For each problem clearly **box** your final answer. If you need additional space, continue your work on the back of the page or extra sheet at the end of the exam. **Calculators and note-cards are not allowed.**

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points Possible</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. [25 pts]

(a) Consider a function $f : D \rightarrow \mathbb{R}$ with $D \subseteq \mathbb{R}$. State the definition of *uniform continuity* of f on some set $E \subseteq D$.

(b) Show that the function

$$f(x) = \frac{1}{x^2}$$

is uniformly continuous on $x \in [1, \infty)$.

2. [25 pts]

(a) Suppose that a function $f : D \rightarrow \mathbb{R}$ with $D \subseteq \mathbb{R}$ and a is an accumulation point of D. State the definition of the derivative of f at $x = a$.

(b) Show that the function

$$f(x) = \begin{cases}
 x & \text{if } x \text{ is rational} \\
 0 & \text{if } x \text{ is irrational}
\end{cases}$$

is not differentiable at $x = 0$.

3. [25 pts]

(a) State Rolle’s Theorem

(b) Prove that between two consecutive roots of \(f(x) = 1 - e^x \sin x \) there exists at least one root of \(g(x) = 1 + e^x \cos x \).

Hint: Note that \(1 - e^x \sin x = 0 \) is equivalent to \(e^{-x} - \sin x = 0 \).
4. [25 pts]

(a) For a function \(f : (a, b) \rightarrow \mathbb{R} \), define \textit{concavity up}, \textit{concavity down}, and a \textit{point of inflection}.

(b) Determine where the function

\[
 f(x) = \begin{cases}
 \frac{x^2 - 1}{x^3} & \text{if } x \neq 0 \\
 0 & \text{if } x = 0
 \end{cases}
\]

is concave up and concave down. Then find all points of inflection, if any, and sketch the graph.