MATH 480: HOMEWORK 1 FALL 2020

NOTE: For each homework assignment observe the following guidelines:

- Include a cover page and an **assignment sheet**.
- Always clearly label all plots (title, x-label, y-label, and legend).
- Use the subplot command from MATLAB when comparing 2 or more plots to make comparisons easier and to save paper.

Read sections 1.1-1.5, Appendix to 1.5, sections 2.1-2.3, Appendix to 2.3, section 2.4.

1. Solve each of the following ODEs for y(x):

(a)
$$y'' + 16y = 0$$
 with $y(0) = 1$ and $y'(0) = 0$.

- (b) y'' + 6y' + 9y = 0 with y(0) = 1 and y'(0) = 0.
- (c) y''' y'' + y' y = 0 with y(0) = 1 and y'(0) = y''(0) = 0.
- 2. Integration by parts allows us to transfer the derivative from one part of the integrand to another:

$$\int_{a}^{b} f(x) g'(x) dx = \left[f(x) g(x) \right]_{a}^{b} - \int_{a}^{b} f'(x) g(x) dx.$$

Prove that the above statement is true. (HINT: think product rule!)

- 3. A linear PDE can be written in differential operator notation $\mathcal{L}(u) = f$, where \mathcal{L} is the linear differential operator, u is the unknown function, and f is the right-hand side function. For each of the following PDEs, determine the linear operator and the right-hand side function, the order of the PDE, and whether the PDE is homogeneous or nonhomogeneous:
 - (a) $u_{xxx} + u_{yyy} u = 0$
 - (b) $u_{tt} u_{xx} + u_{yy} + u_{zz} = xyz$
 - (c) $x^2 u_{xx} y^2 u_y = \cos(x) \sin(y)$
 - (d) $y^2 u_{xx} x^2 u_y = \cos(y) \sin(x)$
 - (e) $u_t \cos(xt)u_{xxx} t^5 = t^2u$
- 4. The following convection-diffusion-decay equation appears in many physical applications:

$$u_t = Du_{xx} - cu_x - \lambda u$$

Show that this equation can be transformed into a heat equation for w(x,t) by applying the transformation

$$u(x,t) = w(x,t)e^{\alpha x - \beta t}$$
.

HINT: You will only obtain a heat equation for w(x,t) with an appropriate choice for the constants α and β in terms of the constants D, c, and λ . Determine the choice for α and β that produces a heat equation for w(x,t).

5. Consider the heat equation:

$$u_t = (K_0(x) u_x)_x$$
$$u(0,t) = 0$$
$$u(1,t) = 1,$$

where $K_0(x) = e^x / \cos(x)$.

- (a) Determine the steady-state solution.
- (b) Plot the steady-state solution in MATLAB. Always clearly label all plots. Include your code.
- 6. Consider the heat equation:

$$u_t = (K_0(x) u_x)_x + Q(t)$$
$$u(1,t) = 0$$
$$u(2,t) = 1,$$

where $K_0(x) = x^2$.

- (a) Under what condition on the heat source Q(t) does a steady-state solution exist for this problem? Clearly explain your answer.
- (b) Under this condition, determine the steady-state solution.
- 7. Consider the function:

$$u(x,t) = \sin(4\pi x) e^{-\pi t}$$

- (a) Plot this function in MATLAB over the domain $(x,t) \in [0,1] \times [0,1]$ using the mesh command. Always clearly label all plots. (HINT: see page 4 of the "Introduction to Plotting with MATLAB" guide available on the course webpage at: https://www.webpages.uidaho.edu/~barannyk/Teaching/tutorial_plotting_Matlab.pdf.)
- (b) Explain what you observe.
- 8. If \mathcal{L} is a linear operator, prove that $\mathcal{L}\left(\sum_{n=1}^{M} c_n u_n\right) = \left(\sum_{n=1}^{M} c_n \mathcal{L} u_n\right).$

(*Hint:* use induction to prove this result. See Lecture 5 for an example of mathematical induction.)

9. Evaluate

$$\int_0^L \cos\frac{n\pi x}{L} \cos\frac{m\pi x}{L} dx$$

where n, m are both integers with $n \ge 0$ and $m \ge 0$. Use the trigonometric identity

$$\cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$

(Be careful if a - b = 0 or a + b = 0.)

- 10. Separation of Variables. By using u(x,t) = X(x)T(t) or u(x,y,t) = X(x)Y(y)T(t), separate the following PDEs into two or three ODEs for X and T or X, Y, and T. The parameters c and k are constants. You do not need to solve the equations. *Note:* one of the equations cannot be separated. Indicate this when you discover that equation.
 - (a) $u_{tt} = (xu_x)_x$
 - (b) $u_{tt} = c^2 u_{xx}$
 - (c) $u_t = k(u_{xx} + u_{yy})$
 - (d) $u_t = k(yu_x + u_y)$
 - (e) $u_t + cu_x = ku_{xx}$
 - (f) $u_t = k(yu_x + xu_y)$
- 11. Consider the following boundary value problem (if necessary, see Section 2.4.1 of the textbook):

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} \quad \text{with} \quad \frac{\partial u}{\partial x}(0,t) = 0, \ \frac{\partial u}{\partial x}(L,t) = 0, \quad \text{and} \quad u(x,0) = f(x).$$

- (a) Give a one-sentence physical interpretation of this problem.
- (b) Solve by the method of separation of variables. First show that there are no separated solutions which exponentially grow in time. [*Hint*: The answer is

$$u(x,t) = A_0 + \sum_{n=1}^{\infty} A_n e^{-\lambda_n k t} \cos \frac{n\pi x}{L}.$$

What are λ_n , A_n ?

12. Consider the polar coordinates

$$x = r\cos\theta, \qquad y = r\sin\theta.$$

(a) Since $r^2 = x^2 + y^2$, show that $\frac{\partial r}{\partial x} = \cos \theta$, $\frac{\partial r}{\partial y} = \sin \theta$, $\frac{\partial \theta}{\partial y} = \frac{\cos \theta}{r}$, and $\frac{\partial \theta}{\partial x} = -\frac{\sin \theta}{r}$.

(b) Show that $\hat{\mathbf{r}} = \cos\theta \,\hat{\mathbf{i}} + \sin\theta \,\hat{\mathbf{j}}$ and $\hat{\boldsymbol{\theta}} = -\sin\theta \,\hat{\mathbf{i}} + \cos\theta \,\hat{\mathbf{j}}$.

- (c) Using the chain rule, show that $\nabla = \hat{\mathbf{r}} \frac{\partial}{\partial r} + \hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial}{\partial \theta}$ and hence $\nabla u = \hat{\mathbf{r}} \frac{\partial u}{\partial r} + \hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial u}{\partial \theta}$.
- (d) If $\vec{A} = A_1 \hat{\mathbf{r}} + A_2 \hat{\theta}$, show that $\nabla \cdot \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_1) + \frac{1}{r} \frac{\partial}{\partial \theta} (A_2)$, since $\frac{\partial \hat{\mathbf{r}}}{\partial \theta} = \hat{\theta}$ and $\frac{\partial \hat{\theta}}{\partial \theta} = -\hat{\mathbf{r}}$ follows from part (b).
- (e) Show that $\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.$

- 13. Heat Equation with Circular Symmetry. Assume that the temperature is circularly symmetric: u = u(r, t), where $r^2 = x^2 + y^2$. Consider any circular annulus $a \le r \le b$.
 - (a) Show that the total heat energy is $2\pi \int_a^b c\rho u r \, dr$.
 - (b) Show that the flow of heat energy per unit time out of the annulus at r = b is

$$\phi = -2\pi b K_0 \frac{\partial u}{\partial r} \bigg|_{r=b}.$$

A similar results holds at r = a.

(c) Assuming the thermal properties are spatially homogeneous, use parts (a) and(b) to derive the circularly symmetric heat equation without sources:

$$\frac{\partial u}{\partial t} = \frac{\kappa}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) \,.$$

(d) Find the equilibrium temperature distribution inside the circular annulus $a \le r \le b$ if the outer radius is insulated and the inner radius is at temperature T.