## MATH 480: Homework 4

Fall 2020

## Review section 3.5. Read sections 3.6, 4.1-4.4.

1. Evaluate

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\ldots
$$

by evaluating the Fourier cosine series for $x$ at $x=0$ (see Section 3.5 on term-byterm integration of Fourier series for more information, in particular an example and equation (3.5.5) on page 124).
2. Let $c_{n}$ be the coefficients of the complex Fourier series of $f(x)$. Show that if $f(x)$ is a real-valued function, then $c_{-n}=\bar{c}_{n}$.

## Wave Equation:

3. Show that the solution to the initially unperturbed wave equation,

$$
\begin{array}{rlrl}
u_{t t} & =c^{2} u_{x x} & & \\
u(0, t) & =0 \quad \text { and } & & u(L, t)=0 \\
u(x, 0) & =0 & \text { and } & \\
u_{t}(x, 0)=g(x),
\end{array}
$$

is

$$
u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

where $G(x)$ is the odd extension of $g(x)$. (HINT: make use of the separation of variables solution that we computed in class.)
4. The total energy for the vibrating string problem can be written as

$$
E=\text { Kinetic Energy }+ \text { Potential Energy }=\int_{0}^{L} \frac{1}{2}\left(\frac{\partial u}{\partial t}\right)^{2} d x+\int_{0}^{L} \frac{c^{2}}{2}\left(\frac{\partial u}{\partial x}\right)^{2} d x
$$

Consider the case where $u(x, t)$ satisfies the wave equation with the boundary conditions $u(0, t)=u(L, t)=0$.
(a) Show that $E$ is constant in time.
(b) Calculate the energy in 1 mode.
(c) Show that the total energy is the sum of the energies contained in each mode.
5. Consider a twice-differentiable function $u(x, t)$, and change variables to the characteristic coordinates, $\xi=x+c t$ and $\eta=x-c t$. Define $Y(\xi, \eta)=u(x, t)$ (that is, $Y$ is the same function as $u$, but expressed as a function of the new coordinates). Show that

$$
u_{t t}-c^{2} u_{x x}=0 \Longrightarrow Y_{\xi \eta}=0
$$

Use this result to show that any solution to the 1 D wave equation can be written in the form

$$
u(x, t)=F(x+c t)+G(x-c t)
$$

for some functions $F$ and $G$.
6. Consider the following problem with Neumann boundary conditions:

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x}, \quad 0<x<L, \quad t>0 \\
& u_{x}(0, t)=u_{x}(L, t)=0 \\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
\end{aligned}
$$

Using separation of variables to show that the solution to this problem can be written in the following form:

$$
u(x, t)=\frac{1}{2}(F(x-c t)+F(x+c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

What are $F(x)$ and $G(x)$ ?
7. Consider the boundary value problem:

$$
\begin{aligned}
& u_{t t}+u_{x x x x}+\delta u_{t}+k u=0 \quad \text { in } \quad 0<x<\pi \\
& u(0, t)=u(\pi, t)=0 \\
& u_{x x}(0, t)=u_{x x}(\pi, t)=0
\end{aligned}
$$

where $\delta, k>0$ are known constants, and $\delta$ is small. This equation, which describes the vertical motion of a beam of length $\pi$ with hinged ends, is called the beam equation. Use separation of variables to find the general solution of this equation.
(HINT: you do not need to check the three cases $\lambda<0, \lambda=0, \lambda>0$ separately. Only one case yields nonzero solution; you can simply focus on that case.)
8. Consider vibrating strings of uniform density $\rho_{0}$ and tension $T_{0}$.
(a) What are the natural frequencies of a vibrating string of length $L$ fixed at both ends?
(b) What are the natural frequencies of a vibrating string of length $H$, which is fixed at $x=0$ and "free" at the other end (i.e. $\frac{\partial u}{\partial x}(H, t)=0$ )? Sketch first three modes of vibration as was done in class for case (a).
(c) Show that the modes of vibration for the odd harmonics (i.e. $n=1,3,5, \ldots$ ) of part (a) are identical to modes of part (b) if $H=L / 2$. Verify that their natural frequencies are the same. Briefly explain using symmetry arguments.

