MATH 480: Homework 5

Fall 2020

Read sections 5.1-5.8.

Sturm-Liouville problem

1. Consider the non-Sturm-Liouville differential equation

$$
\frac{d^{2} \phi}{d x^{2}}+\alpha(x) \frac{d \phi}{d x}+[\lambda \beta(x)+\gamma(x)] \phi=0
$$

Multiply this equation by $H(x)$. Determine $H(x)$ such that the equation may be reduced to the standard Sturm-Liouville form:

$$
\frac{d}{d x}\left[p(x) \frac{d \phi}{d x}\right]+[\lambda \sigma(x)+q(x)] \phi=0 .
$$

Given $\alpha(x), \beta(x)$, and $\gamma(x)$, what are $p(x), \sigma(x)$, and $q(x)$.
2. Consider the eigenvalue problem

$$
x^{2} \frac{d^{2} \phi}{d x^{2}}+x \frac{d \phi}{d x}+\lambda \phi=0 \quad \text { with } \quad \phi(1)=\phi(b)=0 .
$$

(a) Use the result from the previous problem to put this in Sturm-Liouville form.
(b) Using the Rayleigh quotient, show that $\lambda \geq 0$.
(c) Solve this equation subject to the boundary conditions and determine the eigenvalues and eigenfunctions. Is $\lambda=0$ an eigenvalue? Show that there is an infinite number of eigenvalues with a smallest, but no largest.
(d) The eigenfunctions are orthogonal with what weight according to SturmLiouville theory? Verify the orthogonality using properties of integrals.
(e) Show that the $n^{\text {th }}$ eigenfunction has $n-1$ zeros in $1<x<b$.
3. Consider

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+\alpha u
$$

where c, ρ, K_{0}, and α are functions of x, subject to

$$
\begin{aligned}
u(0, t) & =u(L, t)=0 \\
u(x, 0) & =f(x) .
\end{aligned}
$$

Assume that the appropriate eigenfunctions are known.
(a) Using the Rayleigh quotient, show that the eigenvalues are positive if $\alpha<0$.
(b) Solve the initial value problem.
(c) Discuss the limit as $t \rightarrow \infty$.
4. Consider the fourth-order linear differential operator:

$$
\mathcal{L}=\frac{d^{4}}{d x^{4}} .
$$

(a) Show that $u \mathcal{L}(v)-v \mathcal{L}(u)$ is an exact differential.
(b) Evaluate $\int_{0}^{1}[u \mathcal{L}(v)-v \mathcal{L}(u)] d x$ in terms of the boundary data for any functions u and v.
(c) Show that $\int_{0}^{1}[u \mathcal{L}(v)-v \mathcal{L}(u)] d x=0$ if u and v are any two functions satisfying the boundary conditions

$$
\begin{gathered}
\phi(0)=\phi(1)=0 \\
\phi^{\prime}(0)=\phi^{\prime \prime}(1)=0 .
\end{gathered}
$$

(d) For the eigenvalue problem (using the boundary conditions from part (c))

$$
\frac{d^{4} \phi}{d x^{4}}+\lambda e^{x} \phi=0
$$

show that the eigenfunctions corresponding to different eigenvalues are orthogonal. What is the weighting function?
(e) Show that the eigenvalues in part (d) satisfy $\lambda \leq 0$. Is $\lambda=0$ an eigenvalue?
5. Consider the eigenvalue problem

$$
\frac{d^{2} \phi}{d x^{2}}+\left(\lambda-x^{2}\right) \phi=0 .
$$

subject to $\phi^{\prime}(0)=\phi^{\prime}(1)=0$.
(a) Show that $\lambda>0$.
(b) Use the trial function $u_{T}(x)=\left(x-x^{2}\right)^{2}+\alpha$, where α is a constant, to obtain an estimate for λ_{1}. Find the optimal α that gives the sharpest upper bound. (NOTE: Be careful, remember that the trial function to estimate λ_{1} must satisfy the BCs and is not allowed to have any roots in $0<x<1$.)
6. Determine an upper and a nonzero lower bound for the lowest frequency of vibration of a nonuniform string fixed at $x=0$ and $x=1$ with $c^{2}=1+4 \alpha^{2}\left(x-\frac{1}{2}\right)^{2}$, where α is a constant.
7. Consider the boundary value problem

$$
\begin{aligned}
& \phi^{\prime \prime}+\lambda \phi=0 \\
& \phi(0)-\phi^{\prime}(0)=0 \\
& \phi(1)+\phi^{\prime}(1)=0
\end{aligned}
$$

(a) Using the Rayleigh quotient, show that $\lambda>0$.
(b) Show that

$$
\tan \sqrt{\lambda}=\frac{2 \sqrt{\lambda}}{\lambda-1} .
$$

Determine the eigenvalues graphically. Estimate the large eigenvalues.
8. (See problem 3 of homework \# 3). Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound for the lowest eigenvalue of

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0
$$

with

$$
\phi(0)=0 \quad \text { and } \quad \frac{d \phi}{d x}(1)+\phi(1)=0 .
$$

9. Consider the same eigenvalue problem as in problem 8:

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0
$$

with

$$
\phi(0)=0 \quad \text { and } \quad \frac{d \phi}{d x}(1)+\phi(1)=0 .
$$

(a) Determine the lowest eigenvalue using a root finding algorithm (e.g. Newton's method) on a computer. You can use the MATLAB function fzero.
(b) Compare your result to the bound obtained using the Rayleigh quotient in problem 8 .

