Math 540 - Partial Differential Equations - Spring 2018

Homework 1

Due: Friday, February 9, 2018

1. Let $L=\frac{d^{2}}{d x^{2}}-2 \frac{d}{d x}+2$, with the boundary conditions $u(0)=0, \frac{d u}{d x}(\pi / 4)=0$. Show that the completely homogeneous system has only the trivial solution. Construct the Green's function $G(x, \xi)$.
2. Construct the Green's function for $L=\left(\frac{d^{2}}{d x^{2}}\right)+k^{2}$, where $k^{2}>0$, with the boundary conditions $u(0)=0, u(1)=0$. What are the values of k^{2} for which the construction is impossible?
3. Prove the result on the solution of the initial value problem

$$
\begin{aligned}
L(u) & =f(t), \quad t \geq 0 \\
u(0) & =0, u^{\prime}(0)=0
\end{aligned}
$$

in the form of the superposition integral (A.1.67):

$$
u(t)=\int_{0}^{t} G(t, \tau) f(\tau) d \tau
$$

given on page 588.
4. Derive Laplace transform properties:

$$
\mathcal{L}\left(g^{\prime}\right)=s \mathcal{L}(g)-g\left(0^{+}\right), \quad \mathcal{L}\left(g^{\prime \prime}\right)=s^{2} \mathcal{L}(g)-s g\left(0^{+}\right)-g^{\prime}\left(0^{+}\right)
$$

where Laplace transform \mathcal{L} of a function $g(t)$ is defined as

$$
\mathcal{L}(g) \equiv G(s)=\int_{0}^{\infty} g(t) \mathrm{e}^{-s t} d t
$$

Hint: use the definition of Laplace transform and integration by parts.
5. (1.2.1) Consider the diffusion equation with variable coefficients

$$
2 x u_{t}-u_{x x}=0, \quad 0 \leq x<\infty, t \geq 0
$$

with boundary conditions

$$
\begin{gathered}
u(0, t)=C_{1}=\mathrm{constant} \quad \text { if } t>0 \\
u(\infty, t)=C_{2}=\mathrm{constant} \quad \text { if } t>0
\end{gathered}
$$

and initial condition

$$
u(x, 0)=C_{3}=\text { constant }
$$

(a) What is the most general choice for the constants C_{1}, C_{2}, and C_{3} for which the solution of the above initial- and boundary-value problem can be obtained in similarity form?
(a) For the choice of constants obtained in part (a), calculate the solution and evaluate all integration constants explicitly.

