Errata for 4th Edition:

Numerical Methods Using MATLAB,
John H. Mathews and Kurtis D. Fink
Page 8 Line directly above Theorem 1.12 should read:

$$
S=\lim _{n \rightarrow \infty} S_{n} \ldots
$$

Page 19 Line directly above Scientific Notation should read: $S=3 / 124$.
Page 25 Second sentence of Example 1.15 (3a) should read: "Therefore \hat{x} approximates x to three significant digits."

Page 26 Next to last sentence of Example 1.16 should read: ". . $p=0.544987104184$ to six significant digits."

Page 27 Sentence following formula (6) should read: "..., is obtained by rounding the number $d_{k} \cdot d_{k+1} d_{k+2}$ to the nearest integer."

Page 33 Formula (17) should read: $p q=\left(\hat{p}+\epsilon_{p}\right)\left(\hat{q}+\epsilon_{q}\right) \ldots$
Page 34 Last line on page should read:

$$
=\left(\frac{4}{3^{n}}-\frac{3}{3^{n}}\right) A+\left(\frac{4}{3}-\frac{1}{3}\right) B \ldots
$$

Page 35 Fourth line should read:

$$
=\left(\frac{10}{3^{n}}-\frac{9}{3^{n}}\right) A+(10-1) 3^{n-2} B
$$

Page 48 The bottom of Case(i) and Case(ii) should read "Since $\left|g^{\prime}(x)\right| \geq \frac{3}{2} \ldots$ " and "Since $\left|g^{\prime}(x)\right| \leq$ $\frac{1}{2} \ldots$. . respectively.

Page 62 The next to last sentence of Exercise 14 should read: "...is not equal to 1,2 , or 3 for any $n \geq 0$, then..."

Page 62 The next to last sentence in Exercise 15 should read: "If a_{0} and b_{0} are selected such that the zeros of $f(x)$ lie in the interval $\left.[a), b_{0}\right]$ and $c_{n}=\frac{\left(a_{n}+b_{n}\right)}{2}$ is not equal to any of the zeros of $f(x)$ for any $n \geq 0$, then..."

Page 82 Last sentence of first paragraph should read: "Indeed, if we replace p_{k} by p_{k-1} in (28) then the right side becomes the same as the right side of (21) in Example 2.14."

Page 82 Line below formula (29) should read: "... and the relation in (29) is valid only at simple roots."

Page 93 Sentence after formula (17) should read: "... from among the old $\left\{p_{0}, p_{1}, p_{2}\right\} \ldots$...
Page 104 Formula (21) should read: $" \mathbf{0}+\mathbf{X}=\mathbf{X}=\mathbf{X}+\mathbf{0}$ "
Page 107 Formula (41) should read: $" \mathbf{0}+\mathbf{A}=\mathbf{A}=\mathbf{A}+\mathbf{0}$ "

Page 136 Third line of (b) should read: " $[a, j]=\max (a b s(A(1: 4,1)))$ "
Page 158 the first equations in formulas (5) and (6) should read:

$$
x=\frac{-15+y+5 z}{2} \text { and } x_{k+1}=\frac{-15+y_{k}+5 z_{k}}{2}
$$

respectively.
Page 168 The first equation in formula (3) should read: " $x^{2}-2 x-y+0.5=0$ "
Page 190 Expression four lines below formula (5) should read:

$$
\left|E_{15}(1)\right|=\frac{\left|f^{(16)}(c)\right|}{16!}=\frac{e^{c}}{16!}<\frac{3}{16!}<1.433844 \times 10^{-13}
$$

Page 192 Line following formula (8) should read: "where $M \geq \max \left\{\left|f^{(N+1)}(z)\right|: x_{0}-R \leq z \leq\right.$ $\left.x_{0}+R\right\} . "$

Page 224 In Table 4.8, last entry of fifth column should read: " $f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ "
Page 269 Second row second column entry should read: " $y=\frac{-1}{C}(x y)+\frac{D}{C}$ "
Page 354 Second line above formula (3) should read: " $\ldots, P_{n+1}^{(n+1)}(x)=(n+1)!a_{n+1}$ for ... "
Page 420 Formula (20) should read:

$$
G=h\left(f^{\prime}\left(p_{1}\right)-f^{\prime}\left(p_{0}\right)\right)=3 \alpha(1-2 \gamma)+2 \beta
$$

Page 462 Caption for Figure 9.4 should read: " The slope field for the differential equation $y^{\prime}=$ $f(t, y)=(t-y) / 2 . "$

Page 486 In Table 9.7 header for last column should read: " $\mathrm{O}\left(h^{4}\right) \approx C h^{4} \ldots$ "
Page 588 First line of Theorem 11.3 should read: "Let $K_{1}, K_{2}, \ldots, K_{m}$ be vectors in \Re^{n}."
Page 600 Third line below Table 11.1 should read: " The sequence of vectors converges to $\mathrm{V}=$ $\left[\begin{array}{lll}\frac{2}{5} & \frac{3}{5} & 1\end{array}\right]^{\prime}$, and the . . "
Page 601 Last line on page should read:

$$
\mathrm{X}_{k}=\frac{\lambda_{1}^{k}}{c_{1} c_{2} \cdots c_{k}}\left(b_{1} \mathrm{~V}_{1}+b_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \mathrm{~V}_{2}+\cdots+b_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \mathrm{~V}_{n}\right)
$$

Page 647 Section $1.35($ a) should read: " $\ln ((x+1) / 2)$ or $\ln (1+1 / x)$ "
Page 655 Section 4.1 (c) should read: "... the maximum of ... "

