Elementary Matrices

Let us introduce the following matrices. We call the elementary matrix the matrix

$$
\left(\begin{array}{cccccccc}
1 & & & & & & \tag{i}\\
& \ddots & & & & 0 & \\
& & 1 & & & & \\
\cdot & \cdot & \cdot & \alpha & \cdot & \cdot & \cdot \\
& & & & 1 & & \\
& 0 & & & & \ddots & \\
& & & & & & 1
\end{array}\right)
$$

which is different from the identity matrix only by that it has the entry α on the i th position of the main diagonal, $1 \leq i \leq n$, where $\alpha \neq 0$ is an arbitrary number.

We also call elementary λ-matrix, the matrix

$$
\left(\begin{array}{ccccccc}
1 & & & & \cdot & & \tag{i}\\
& \ddots & & & \vdots & & \\
\cdot & \cdots & 1 & \cdots & \phi(\lambda) & \cdots & \cdot \\
& & & \ddots & \vdots & & \\
& & & & 1 & & \\
& & & & \vdots & \ddots & \\
& & & & \cdot & & 1
\end{array}\right)
$$

(j)
that is different from the identity matrix by that it has an arbitrary polynomial $\phi(\lambda)$ at the intersection of i th row and j th column, $1 \leq i \leq n, 1 \leq j \leq n$, and $i \neq j$.

Any elementary transformation of a matrix A is equivalent to multiplication of this matrix from the left or right by some elementary matrix.

Indeed, the following four statements are true:

- multiplication of the matrix A by matrix (1) from the left is equivalent to multiplication of i th row of matrix A by number α;
- multiplication of the matrix A by matrix (1) from the right is equivalent to multiplication of i th column of matrix A by number α;
- multiplication of the matrix A by matrix (2) from the left is equivalent to adding j th row of matrix A multiplied by $\phi(\lambda)$ to its i th row;
- multiplication of the matrix A by matrix (2) from the right is equivalent to adding i th column of matrix A multiplied by $\phi(\lambda)$ to its j th column;

Denote by $E_{i j}$ a matrix obtained from the unit matrix by interchanging i th and j th rows.

$$
E_{i j}=\left(\begin{array}{ccccccc}
1 & & & & & & \tag{3}\\
& \ddots & & & & & \\
& & 0 & \cdots & 1 & & \\
& & \vdots & \ddots & \vdots & & \\
& & 1 & \cdots & 0 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right)(i)
$$

The following statements are true:

- multiplication of the matrix A by matrix (3) from the left is equivalent to interchanging of i th and j th rows of matrix A;
- multiplication of the matrix A by matrix (3) from the right is equivalent to interchanging of i th and j th columns of matrix A;

EXAMPLE

Multiply 2nd row by α.

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

Elementary matrix that we need to use is

$$
E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and we multiply matrix A by E from the left, i.e.

$$
E A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
\alpha a_{21} & \alpha a_{22} & \alpha a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

EXAMPLE Interchange 2nd and 3rd rows of matrix A

$$
E_{23} A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)
$$

EXAMPLE

Consider again matrix A and let's eliminate variable x_{1} from the 2 nd and 3rd equations/rows using Gaussian elimination. Then we will identify which elementary matrices were used and find total transformation (matrix) which reduces A to the equivalent matrix which has entries in the first column below the main diagonal zero.

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \sim\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}-\frac{a_{21}}{a_{11}} a_{12} & a_{23}-\frac{a_{21}}{a_{11}} a_{13} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

where we subtracted 1 st row multiplied by $\frac{a_{21}}{a_{11}}$ from the 2 nd row, i.e.

$$
\begin{aligned}
& 2 \text { nd row }-\frac{a_{21}}{a_{11}} \cdot 1 \text { st row } \rightarrow 2 \text { nd row } \Rightarrow m_{21}=\frac{a_{21}}{a_{11}} \\
& i=2 \quad j=1
\end{aligned}
$$

and elementary matrix is

$$
\begin{aligned}
E_{1}= & \left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{a_{21}}{a_{11}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad(i=2) \\
& (j=1)
\end{aligned}
$$

Check this with elementary matrix.

$$
\begin{aligned}
E_{1} \cdot A & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{a_{21}}{a_{11}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & -\frac{a_{21}}{a_{11}} a_{12}+a_{22} & -\frac{a_{21}}{a_{11}} a_{13}+a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \quad \text { OK }
\end{aligned}
$$

Now, let us eliminate variable x_{1} from the 3rd equation

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \sim\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & \tilde{a}_{32} & \tilde{a}_{33}
\end{array}\right)
$$

where ${ }^{\sim}$ indicates transformed entries.
3 rd row $-\frac{a_{31}}{a_{11}} \cdot 1$ st row $\rightarrow 3$ rd row $\Rightarrow m_{31}=\frac{a_{31}}{a_{11}}$

$$
i=3 \quad j=1
$$

and elementary matrix is

$$
\begin{aligned}
E_{2}= & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{a_{31}}{a_{11}} & 0 & 1
\end{array}\right) \quad(i=3) \\
& (j=1)
\end{aligned}
$$

The resulting total transformation matrix is $B=E_{2} E_{1}$ (note: reversed order) and

$$
B A=E_{2} E_{1} A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & \tilde{a}_{32} & \tilde{a}_{33}
\end{array}\right)
$$

EXAMPLE

$$
\left\{\begin{aligned}
2 x_{1}-x_{2} & =1 \\
-x_{1}+2 x_{2}-x_{3} & =0 \\
-x_{2}+2 x_{3} & =1
\end{aligned}\right.
$$

Denote

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Then the augmented matrix $A \mid b$ is

$$
\left(\begin{array}{ccccc}
2 & -1 & 0 & \vdots & 1 \\
-1 & 2 & -1 & \vdots & 0 \\
0 & -1 & 2 & \vdots & 1
\end{array}\right) \sim\left(\begin{array}{ccccc}
2 & -1 & 0 & \vdots & 1 \\
0 & \frac{3}{2} & -1 & \vdots & \frac{1}{2} \\
0 & -1 & 2 & \vdots & 1
\end{array}\right) \sim
$$

$$
\begin{aligned}
& 2 \text { nd row }+\frac{1}{2} \cdot 1 \text { st row } \rightarrow 2 \text { rd row } \Rightarrow m_{21}=-\frac{1}{2} \\
& i=2 \quad j=1
\end{aligned}
$$

and elementary matrix is

$$
\begin{aligned}
E_{1}= & \left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad(i=2) \\
& (j=1)
\end{aligned}
$$

Here $m_{31}=0$ since $a_{31}=0$ in the given matrix.
Now we eliminate x_{2} from the 3rd equation

$$
\left(\begin{array}{ccccc}
2 & -1 & 0 & \vdots & 1 \\
0 & \frac{3}{2} & -1 & \vdots & \frac{1}{2} \\
0 & 0 & \frac{4}{3} & \vdots & \frac{4}{3}
\end{array}\right)
$$

3 rd row $+\frac{2}{3} \cdot 2$ nd row $\rightarrow 3$ rd row $\Rightarrow m_{32}=-\frac{2}{3}$

$$
i=3 \quad j=2
$$

and elementary matrix is

$$
\begin{gathered}
E_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{2}{3} & 1
\end{array}\right) \quad(i=3) \\
\\
(j=2)
\end{gathered}
$$

Therefore, the reduced matrix

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & \frac{3}{2} & -1 \\
0 & 0 & \frac{4}{3}
\end{array}\right) \equiv \tilde{A}=E_{2} E_{1} A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{2}{3} & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) A \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1
\end{array}\right) A \Rightarrow \tilde{A}=B A,
\end{aligned}
$$

where $B=E_{2} E_{1}$ is the transformation matrix.
Check:

$$
B A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & \frac{3}{2} & -1 \\
0 & 0 & \frac{4}{3}
\end{array}\right)=\tilde{A} \quad \text { OK }
$$

