1 Exact Equations and Integrating Factors

Def Given $M d x+N d y=0$ with $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, i.e. not exact. If

$$
\mu(x, y) M(x, y) d x+\mu(x, y) N(x, y) d y=0
$$

is exact, i.e.

$$
\frac{\partial}{\partial y}(\mu M)=\frac{\partial}{\partial x}(\mu N)
$$

then $\mu(x, y)$ is called an integrating factor.
In example with equation (A), $\frac{1}{t}$ is an integrating factor, in (B) $\frac{1}{t y}$ is an integrating factor.

How do we find integrating factors? What are the conditions on $\mu(x, y)$ so as to make $\mu(x, y)$ an integrating factor?

ANS

$$
\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} ; \quad \mu \frac{\partial M}{\partial y}+M \frac{\partial \mu}{\partial y}=\mu \frac{\partial N}{\partial x}+N \frac{\partial \mu}{\partial x}
$$

or

$$
M \frac{\partial \mu}{\partial y}-N \frac{\partial \mu}{\partial x}+\mu\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=0 \quad \text { a PDE }
$$

Is there an integrating factor $\mu(x)$, function of x only?

$$
-N \frac{d \mu}{d x}+\mu\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=0
$$

or

$$
\frac{d \mu}{\mu}=\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) d x
$$

ANS YES if $\quad \ldots$ is a function of x only.

Is there an integrating factor $\mu(y)$, function of y only?

$$
M \frac{d \mu}{d y}+\mu\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=0
$$

or

$$
\frac{d \mu}{\mu}=\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d y
$$

ANS YES if \ldots is a function of y only.
\therefore If $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
see if (a) $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)$ is a function of x only.
YES $\Rightarrow \mu=\mu(x)$ only. Solve a separable DE for $\mu(x)$.
see if (b) $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)$ is a function of y only.

$$
\mathrm{YES} \Rightarrow \mu=\mu(y) \text { only. Solve a separable DE for } \mu(y)
$$

Example

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{x^{2}+y^{2}+x}{x y}, \quad y(2)=-1 . \text { Find } y(1) . \\
\left(x^{2}+y^{2}+x\right) d x+x y d y=0 \\
\frac{\partial M}{\partial y}=2 y ; \quad \frac{\partial N}{\partial x}=y \quad \text { not exact } \\
\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=\frac{1}{x^{2}+y^{2}+x}(y-2 y) \quad \text { not a function of } y \\
\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=\frac{1}{x y}(2 y-y)=\frac{1}{x} \quad \text { Good! }
\end{gathered}
$$

$$
\begin{gathered}
\frac{d \mu}{\mu}=\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) d x \\
\frac{d \mu}{\mu}=\frac{1}{x} d x \Rightarrow \ln |\mu|=\ln |x|+\ln \tilde{C} \Rightarrow \mu=C x \text { is an integrating factor }
\end{gathered}
$$

Now DE with $\mu=x$

$$
\Rightarrow\left(x^{3}+x y^{2}+x^{2}\right) d x+x^{2} y d y=0 \quad \text { is supposed to be exact }
$$

CHECK:

$$
\begin{gathered}
\frac{\partial M^{*}}{\partial y}=2 x y=\frac{\partial N^{*}}{\partial x} \quad \text { EXACT } \\
f(x, y)=\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}+\frac{x^{3}}{3}+\theta(y) \Rightarrow f(x, y)=\frac{x^{4}}{4}+\frac{x^{3}}{3}+\frac{x^{2} y^{2}}{2} \\
f(x, y)=\quad \frac{x^{2} y^{2}}{2}+\psi(x) \\
\Rightarrow d\left[\frac{x^{4}}{4}+\frac{x^{3}}{3}+\frac{x^{2} y^{2}}{2}\right]=0 \Rightarrow \sqrt{\frac{x^{4}}{4}+\frac{x^{3}}{3}+\frac{x^{2} y^{2}}{2}=C} \\
3 x^{4}+4 x^{3}+6 x^{2} y^{2}=C_{1} \quad \text { I.C. } \Rightarrow 3(2)^{4}+4(2)^{3}+6(2)^{2}(-1)^{2}=104=C_{1} \\
3 x^{4}+4 x^{3}+6 x^{2} y^{2}=104 \text { to find } y(1) \text { solve for } y \\
y=-\sqrt{\frac{104-x^{4}-4 x^{3}}{6 x^{2}}} \frac{\text { note the choice of }- \text { in } \sqrt{ }}{y(1)=-\sqrt{\frac{104-3-4}{6}}=-4.02}
\end{gathered}
$$

