Math 571 - Functional Analysis I - Fall 2017

Homework 10 Due: Friday, November 10, 2017

- 1. (# 8, Section 3.2) Show that in an inner product space, $x \perp y$ if and only if $||x + \alpha y|| \ge ||x||$ for all scalars α .
- 2. (# 9, Section 3.2) Let V be the vector space of all continuous complex-valued functions on J = [a, b]. Let $X_1 = (V, ||.||_{\infty})$, where $||x||_{\infty} = \max_{t \in J} |x(t)|$; and let $X_2 = (V, ||.||_2)$, where

$$||x||_2 = \langle x, x \rangle^{1/2}, \quad \langle x, y \rangle = \int_a^b x(t) \overline{y(t)} dt$$

Show that the identity mapping $x \to x$ of X_1 onto X_2 is continuous. (It is not a homeomorphism. X_2 is not complete.)

- 3. (# 1, Section 3.3) Let H be a Hilbert space, $M \subset H$ a convex subset, and (x_n) a sequence in M such that $||x_n|| \to d$, where $d = \inf_{x \in M} ||x||$. Show that (x_n) converges in H. Give an illustrative example in \mathbb{R}^2 or \mathbb{R}^3 .
- 4. (# 3, Section 3.3)
 - (a) Show that the vector space X of all real-valued continuous functions on [-1, 1] is the direct sum of the set of all even continuous functions and the set of all odd continuous functions on [-1, 1].
 - (b) Give examples of representations of \mathbb{R}^3 as a direct sum (i) of a subspace and its orthogonal complement, (ii) of any complementary pair of subspaces.
- 5. (# 6, Section 3.3) Show that $Y = \{x : x = (\xi_j) \in l^2, \xi_{2n} = 0, n \in \mathbb{N}\}$ is a closed subspace of l^2 and find Y^{\perp} . What is Y^{\perp} if $Y = \operatorname{span}\{e_1, \ldots, e_n\} \subset l^2$, where $e_j = (\delta_{jk})$?

Suggested problems:

- 6. (# 8, Section 3.3) Show that the annihilator M^{\perp} of a set $M \neq$ in an inner product space X is closed subspace of X.
- 7. (# 4, Section 3.4) Give an example of an $x \in l^2$ such that we have strict inequality in Bessel inequality

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$