Math 432 - Numerical Linear Algebra - Fall 2013

Homework 11 Assigned: Saturday, November 29, 2013 Due: Friday, December 6, 2013

Use the following data for both problems:

- (i) A randomly generated matrix of order 100.
- (ii) Hilbert matrix of order 20.
- (iii) $\begin{pmatrix} 1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{pmatrix}$; ϵ is such that $fl(1 + \epsilon^2) = 1$.

For example, $\epsilon = 10^{-8}$ would work. Why?

For each of these matrices, generate b so that the least-squares solution x in each case has all entries equal 1.

1. (Implementation of the SVD algorithm for full-rank overdetermined least-squares problems.) Write a Matlab program, called **lsfrsvd**, to implement Algorithm 8.4 on page 259 using reduced SVD as follows:

 $[\hat{x}] = \mathbf{lsfrsvd}(A, b).$

Test your program using the above matrices.

- 2. (The purpose of this exercise is to compare the accuracy and residuals of different least-squares methods for full-rank overdetermined problems.)
 - (a) Compute the least-squares solution \hat{x} for each above data set using the following:
 - i. $[\hat{x}] = \mathbf{lsfrmgs}(A, b)$ (least-squares using MGS).
 - ii. $[\hat{x}] = \mathbf{lsfrqrh}(A, b)$ (least-squares using Householder QR).
 - iii. $[\hat{x}] = \mathbf{lsfrnme}(A, b)$ (least-squares using normal equations).
 - iv. $[\hat{x}] = \mathbf{pinv}(A) * b$ (least-squares using generalized inverse).
 - v. $[\hat{x}] = \mathbf{lsfrsvd}(A, b)$ (least-squares using SVD).

<u>Note</u>: **lsfrmgs**, **lsfrqrh**, and **lsfrnme** are all available in MATCOM. **pinv** is a Matlab command for computing the generalized inverse of a matrix.

(b) Using the results of (a), make one table for each data set in the following format shown in Table 1 below. Note also that the vector x has all entries equal to 1. Write your observations.

Method	$ x - \hat{x} _2 / x _2$	$ A\hat{x} - b _2$
lsfrmgs		
lsfrqrh		
lsfrnme		
generalized inverse		
lsfrsvd		

Table 1: Comparison of different methods for the full-rank overdetermined least-squares problems