Math 432 - Numerical Linear Algebra - Fall 2013

Homework 11

Assigned: Saturday, November 29, 2013
Due: Friday, December 6, 2013
Use the following data for both problems:
(i) A randomly generated matrix of order 100 .
(ii) Hilbert matrix of order 20.
(iii) $\left(\begin{array}{lll}1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon\end{array}\right)$; ϵ is such that $\mathrm{fl}\left(1+\epsilon^{2}\right)=1$.

For example, $\epsilon=10^{-8}$ would work. Why?
For each of these matrices, generate b so that the least-squares solution x in each case has all entries equal 1.

1. (Implementation of the SVD algorithm for full-rank overdetermined least-squares problems.) Write a Matlab program, called lsfrsvd, to implement Algorithm 8.4 on page 259 using reduced SVD as follows:

$$
[\hat{x}]=\operatorname{lsfrsvd}(A, b) .
$$

Test your program using the above matrices.
2. (The purpose of this exercise is to compare the accuracy and residuals of different least-squares methods for full-rank overdetermined problems.)
(a) Compute the least-squares solution \hat{x} for each above data set using the following:
i. $[\hat{x}]=\operatorname{lsfrmgs}(A, b)$ (least-squares using MGS).
ii. $[\hat{x}]=\operatorname{lsfrqrh}(A, b)$ (least-squares using Householder QR).
iii. $[\hat{x}]=\operatorname{lsfrnme}(A, b)$ (least-squares using normal equations).
iv. $[\hat{x}]=\operatorname{pinv}(A) * b$ (least-squares using generalized inverse).
v. $[\hat{x}]=\operatorname{lsfrsvd}(A, b)$ (least-squares using SVD).

Note: lsfrmgs, lsfrqrh, and lsfrnme are all available in MATCOM. pinv is a Matlab command for computing the generalized inverse of a matrix.
(b) Using the results of (a), make one table for each data set in the following format shown in Table 1 below. Note also that the vector x has all entries equal to 1 . Write your observations.

Method	$\\|x-\hat{x}\\|_{2} /\\|x\\|_{2}$	$\\|A \hat{x}-b\\|_{2}$
lsfrmgs		
lsfrqrh		
lsfrnme		
generalized inverse		
lsfrsvd		

Table 1: Comparison of different methods for the full-rank overdetermined leastsquares problems

