Math 571 - Functional Analysis I - Fall 2017

Homework 11

Due: Friday, November 17, 2017

1. (\#5, Section 3.4) If $\left(e_{k}\right)$ is an orthonormal sequence in an inner product space X, and $x \in X$, show that $x-y$ with y given by

$$
y=\sum_{k=1}^{n} \alpha_{k} e_{k}, \quad \alpha_{k}=\left\langle x, e_{k}\right\rangle
$$

is orthogonal to the subspace $Y_{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.
2. (\# 6, Section 3.4) (Minimum property of Fourier coefficients) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal set in an inner product space X, where n is fixed. Let $x \in X$ be any fixed element and $y=\beta_{1} e_{1}+\ldots+\beta_{n} e_{n}$. Then $\|x-y\|$ depends on $\beta_{1}, \ldots, \beta_{n}$. Show by direct calculation that $\|x-y\|$ is minimum if and only if $\beta_{j}=\left\langle x, e_{j}\right\rangle$, where $j=1, \ldots, n$.
3. (\# 9, Section 3.4) Orthonormalize the first three terms of the sequence $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$, where $x_{j}(t)=t^{j}$ on the interval $[-1,1]$, where

$$
\langle x, y\rangle=\int_{-1}^{1} x(t) y(t) d t
$$

4. (\#3, Section 3.5) Illustrate with an example that a convergent series $\sum\left\langle x, e_{k}\right\rangle e_{k}$ need not have the sum x.
5. (\# 4, Section 3.5) If $\left(x_{j}\right)$ is a sequence in an inner product space X such that the series $\left\|x_{1}\right\|+\left\|x_{2}\right\|+\ldots$ converges, show that $\left(s_{n}\right)$ is a Cauchy sequence, where $s_{n}=x_{1}+\ldots+x_{n}$.
6. (\# 6, Section 3.5) Let $\left(e_{j}\right)$ be an orthonormal sequence in a Hilbert space H. Show that if

$$
x=\sum_{j=1}^{\infty} \alpha_{j} e_{j}, \quad y=\sum_{j=1}^{\infty} \beta_{j} e_{j},
$$

then

$$
\langle x, y\rangle=\sum_{j=1}^{\infty} \alpha_{j} \bar{\beta}_{j}
$$

the series being absolutely convergent.
7. (\# 1, Section 3.6) If F is an orthonormal basis in an inner product space X, can we represent every $x \in X$ as a linear combination of elements of F ? (By definition, a linear combination consists of finitely many terms.)

