Math 432 - Numerical Linear Algebra - Fall 2013

Homework 12

Assigned: Sunday, December 8, 2013
Due: Friday, December 13, 2013

1. Apply the Gers̆gorin disk theorems to obtain bounds for the eigenvalues of the following matrices:
(a) $A=\left(\begin{array}{ccc}10 & 1 & 1 \\ 2 & 10 & 1 \\ 2 & 2 & 10\end{array}\right)$,
(b) $\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 5 & 0 \\ 1 & 1 & 6\end{array}\right)$,
(c) $\left(\begin{array}{ccc}1-i & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1-i & 1+i\end{array}\right)$
2. Apply the power method and inverse power method, find the dominant eigenvalue and the corresponding eigenvector for matrix A in exercise 1 (a).
3. Compute the smallest eigenvalue of the matrix A in exercise 1 (c) by applying the power method to A^{-1}, without explicitly computing A^{-1}.
4. Use example 9.20 on page 303 on the textbook to continue Rayleigh Quotient iterations with $k=2,3$ and 4 to find approximations of an eigenvalue and its corresponding eigenvector of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right), \quad \text { with } \quad x_{0}=\left(\begin{array}{c}
0.5246 \\
0.7622 \\
1.000
\end{array}\right)
$$

