Math 571 - Functional Analysis I - Fall 2017

Homework 12
Due: Friday, November 17, 2017

1. (\# 4, Section 3.6) Derive from the Parseval relation

$$
\sum_{k}\left|\left\langle x, e_{k}\right\rangle\right|^{2}=\|x\|^{2}
$$

the following formula (which is often called the Parseval relation).

$$
\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle} .
$$

2. (\# 5, Section 3.6) Show that an orthonormal family $\left(e_{k}\right), k \in I$, in an Hilbert space H is total if and only if the relation in Prob. 1 holds for every x and y in H.
3. (\# 1, Section 3.7) Show that the Legendre differential equation can be written

$$
\left[\left(1-t^{2}\right) P_{n}^{\prime}\right]^{\prime}=-n(n+1) P_{n}
$$

Multiply this by P_{m}. Multiply the corresponding equation for P_{m} by $-P_{n}$ and add the two equations. Integrating the resulting equation from -1 to 1 , show that $\left(P_{n}\right)$ is an orthogonal sequence in the space $L^{2}[-1,1]$.
4. (\# 9, Section 3.7) Solve the differential equation $y^{\prime \prime}+\left(2 n+1-t^{2}\right) y=0$ in terms of the Hermite polynomials.
5. (\# 15, Section 3.7) Show that the functions

$$
e_{n}(t)=\mathrm{e}^{-t / 2} L_{n}(t)
$$

where $L_{n}(t)$ is the Laguerre polynomial of order n, constitute an orthogonal sequence in the space $L^{2}[0,+\infty)$.
6. (\#2, Section 3.8) (Space l^{2}) Show that every bounded linear functional f on l^{2} can be represented in the form

$$
f(x)=\sum_{j=1}^{\infty} \xi_{j} \bar{\zeta}_{j}
$$

where $z=\left(\zeta_{j}\right) \in l^{2}$.
7. (\#3, Section 3.8) If z is any fixed element of an inner product space X, show that $f(x)=\langle x, z\rangle$ defines a bounded linear functional f on X, of norm $\|z\|$.

