MATH 326: HOMEWORK 1
 SPRING 2013

1. Solve the following problem using elementary calculus techniques.

$$
\begin{array}{rc}
\min & (x-5)^{2}+(y-5)^{2} \\
\text { subject to } & x+y=5
\end{array}
$$

[Hint: We did this in class with the goat problem. Solve for y and substitute into the objective, then use simple differentiation to find the point of optimality. Remember to show it is a minimum.]
2. Consider the following variation of Problem ??.

$$
\begin{array}{rc}
\min & (x-5)^{2}+(y-5)^{2} \\
\text { subject to } & x+y \leq 5 \\
& x, y \geq 0
\end{array}
$$

(a) Draw the level sets of the objective function and the feasible region. Use this information to compute the point of optimality. [Hint: If you did Problem ?? right, you already found this point.]
(b) Compute the gradient of the objective function at the point of optimality along with the gradients of any binding constraints at that point. [Hint: There will be only one binding constraint.]
(c) Show that the two gradients are multiple of each other.
3. In this problem you will use elementary calculus (and a little bit of vector algebra) to show that the gradient of a simple function is always perpendicular to its level sets:
(a) Find the gradient of $z(x, y)=x^{2}+y^{2}$ evaluated at point (x_{0}, y_{0}).
(b) Take any level curve set $x^{2}+y^{2}=k$ for $z(x, y)=x^{2}+y^{2}$. Use implicit differentiation to find $d y / d x$. When you evaluate this at point $\left(x_{0}, y_{0}\right)$, this is the slope of a tangent line to the circle $x^{2}+y^{2}=k$ at (x_{0}, y_{0}).
(c) Find an expression for a vector parallel to the tangent line at $\left(x_{0}, y_{0}\right)$. [Hint: You can use the slope you just found.]
(d) Show that the vector you just found is perpendicular to the gradient found in the first step. [Hint: Use the dot product.]

