Math 432 - Numerical Linear Algebra - Fall 2013

Homework 1

Assigned: Friday, August 30, 2013
Due: Friday, September 6, 2013

- Include a cover page and a problem sheet.

0. Give a brief description of your academic background and research interests. If you work in a lab or research group, give your supervisor's name and describe your project. One paragraph is fine.
1. Given matrices

$$
A=\left(\begin{array}{ccc}
1 & -1 & 3 \\
2 & 0 & 5
\end{array}\right), B=\left(\begin{array}{ccc}
2 & 1 & 0 \\
-3 & -1 & 5 \\
1 & 3 & 4
\end{array}\right), C=\left(\begin{array}{cc}
4 & 2 \\
3 & -1 \\
2 & -4
\end{array}\right), D=\left(\begin{array}{ccc}
1 & -1 & 4 \\
0 & 2 & -2 \\
0 & 0 & 3
\end{array}\right)
$$

compute the indicated matrices. If an operation cannot be performed, indicate why not.
(a) $2 A+C^{T}$ and $C-3 B$
(b) $C A$ and $A C$
(c) $C^{T} D$ and $B A^{T}$
(d) $\operatorname{det}(D)$ and $\operatorname{det}(A)$
2. Let A be a nonsingular matrix.
(a) Show that A^{-1} is unique.
(b) Show that A^{-1} is nonsingular and $\left(A^{-1}\right)^{-1}=A$.
(c) Show that A^{T} is nonsingular and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(d) If B is nonsingular, show that $A B$ is nonsingular and $(A B)^{-1}=B^{-1} A^{-1}$.
3. Calculate the determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 4 & 1 \\
-2 & 1 & -3 & 2 \\
0 & 0 & 0 & 2 \\
3 & 2 & 1 & -1
\end{array}\right)
$$

by first expanding along the second column.
4. Let $D=\operatorname{diag}\left[d_{11}, d_{22}, \ldots, d_{n n}\right]$ be an $n \times n$ diagonal matrix. Show that $\operatorname{det}(D)=$ $d_{11} d_{22} \ldots d_{n n}$.
5. Let α be a real number and let

$$
A=\left(\begin{array}{ll}
\alpha & 4 \\
1 & \alpha
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
2 & \alpha & 0 \\
-3 & -1 & 5 \\
1 & 3 & \alpha
\end{array}\right)
$$

(a) For what value(s) of α is A singular?
(b) For what value(s) of α is B singular?
6. Compute the spectrum of matrix

$$
A=\left(\begin{array}{lll}
2 & -3 & 1 \\
1 & -2 & 1 \\
1 & -3 & 2
\end{array}\right)
$$

Recall that the spectrum of a matrix is the set of all its eigenvalues.

