Math 571 - Functional Analysis I - Fall 2017

Homework 1

Due: Friday, September 1, 2017

- Include a problem sheet.

1. Show that the real line is a metric space.
2. Does $d(x, y)=(x-y)^{2}$ define a metric on the set of all real numbers?
3. Find all metrics on a set X consisting of two points. Consisting of one point.
4. (Triangle inequality) The triangle inequality has several useful consequences. For instance, using the generalized triangle inequality

$$
d\left(x_{1}, x_{n}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\cdots+d\left(x_{n-1}, x_{n}\right)
$$

show that

$$
|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w)
$$

5. Show that in sequence space s with metric

$$
d(x, y)=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{\left|\xi_{j}-\eta_{j}\right|}{1+\left|\xi_{j}-\eta_{j}\right|}
$$

(see example 1.2-1 on pg. 9-11) we can obtain another metric by replacing $1 / 2^{j}$ with $\mu_{j}>0$ such that $\sum \mu_{j}$ converges.
6. (Space $\left.l^{p}\right)$ Find a sequence which converges to 0 , but is not in any space l^{p}, where $1 \leq p<\infty$.
7. (Diameter, bounded set) The diameter $\delta(A)$ of a nonempty set A in a metric space (X, d) is defined to be

$$
\delta(A)=\sup _{x, y \in A} d(x, y) .
$$

A is said to be bounded if $\delta(A)<\infty$. Show that $A \subset B$ implies $\delta(A) \leq \delta(B)$.

