Math 571 - Functional Analysis I - Fall 2017 <u>Homework 2</u> Due: Monday, September 11, 2017

1. What is an open ball $B(x_0; 1)$ on \mathbb{R} ? In \mathbb{C} ? In C[a, b]? Explain Fig. 1.

Figure 1: Region containing the graphs of all $x \in C[-1, 1]$ which constitute the ϵ -neighborhood, with $\epsilon = 1/2$, of $x_0 \in C[-1, 1]$ given by $x_0(t) = t^2$

- 2. If x_0 is an accumulation point of a set $A \subset (X, d)$, show that any neighborhood of x_0 contains infinitely many points of A.
- 3. Show that the closure $\overline{B(x_0;r)}$ of an open ball $B(x_0;r)$ in a metric space can differ from the closed ball $\tilde{B}(x_0;r)$.
- 4. Show that $A \subset \overline{A}$, $\overline{\overline{A}} = \overline{A}$, $\overline{A \cup B} = \overline{A} \cup \overline{B}$, $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
- 5. (Continuous mapping) Show that a mapping $T : X \to Y$ is continuous if and only if the inverse image of any closed set $M \subset Y$ is a closed set in X.
- 6. (Subsequences) If a sequence (x_n) in a metric space X is convergent and has limit x, show that every subsequence (x_{n_k}) of (x_n) is convergent and has the same limit x.
- 7. If (x_n) is Cauchy and has a convergent subsequence, say, $x_{n_k} \to x$, show that (x_n) is convergent with the limit x.