## MATH 326: Homework 4 <br> SPRING 2013

1. Show that the vectors

$$
x_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

form a basis for $\mathbb{R}^{2 \times 1}$. [Hint: (i) Show that the vectors are linearly independent. (ii) Show that you can find coefficients $\alpha_{1}$ and $\alpha_{2}$ so that

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}=\left[\begin{array}{l}
a \\
b
\end{array}\right],
$$

where $a$ and $b$ are arbitrary real values. Note, you can do both these things simultaneously.]
2. Assume that a leather company manufactures two types of belts: regular and deluxe. Each belt requires 1 square yard of leather. A regular belt requires 1 hour of skilled labor to produce, while a deluxe belt requires 2 hours of labor. The leather company receives 40 square yards of leather each week and a total of 60 hours of skilled labor is available. Each regular belt nets $\$ 3$ in profit, while each deluxe belt nets $\$ 5$ in profit. The company wishes to maximize profit.
(a) Ignoring the divisibility issues, construct a linear programming problem whose solution will determine the number of each type of belt the company should produce.
(b) Put the problem you found into standard form.
3. Identify all basic solutions to the equations in standard form in Problem 2 and indicate which ones are feasible to the problem and which are not.
4. Use Matlab to solve the diet problem (see class notes) in standard form. [Hint: standard problem would require using the surplus variables and in Matlab we can define empty matrices $\mathrm{A}=[], \mathrm{b}=[]$ and define H and r instead.]

