Math 432 - Numerical Linear Algebra - Fall 2013

Homework 4 Assigned: Friday, September 20, 2013 Due: Friday, September 27, 2013

- Include a cover page and a problem sheet.
- 1. (# 4.3 (c)) Show that the roots of the polynomial (x 1)(x 0.99)(x 2) are ill-conditioned and give reasons for your answer.

For **Matlab resources** please see page 78 of the textbook. Matlab is available in all computer labs on campus as well as via VLAB

2. (# 4.9) Consider the matrix

1	'12	11	10		3	2	$1 \rangle$
	11	11 11	10		3	2	1
	0	10					
	÷		·	·	·	÷	:
	÷			۰.	۰.	2	
	0				0		1)

Find the eigenvalues of this matrix using Matlab command **eig**. Now perturb the (1, 12) elements by 10^{-9} and compute the eigenvalues of this perturbed matrix. What conclusion do you make about the conditioning of the eigenvalues?

- 3. (# 4.16 4.17 (a))
 - (a) How are Cond(A) and $Cond(A^{-1})$ related?
 - (b) Show that
 - i. $\operatorname{Cond}(A) \ge 1$ for a norm ||.|| such that $||I|| \ge 1$;
 - ii. $\operatorname{Cond}_2(A^T A) = (\operatorname{Cond}_2(A))^2;$
 - iii. Cond(cA) = Cond(A) for any given norm;
 - (c) Let A be an orthogonal matrix. Then show that $\text{Cond}_2(A) = 1$.
- 4. (# M4.2) Using the function for, write a Matlab program to find the *inner* product and the outer product of two n-vectors u and v.

$$[s] = inpro(u, v)$$

[A] = outpro(u, v)

Test your program on vectors $u = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}^T$ and $v = \begin{pmatrix} 5 & 6 & 7 & 8 \end{pmatrix}^T$.

Math 432 - Numerical Linear Algebra - Fall 2013 Homework 4, updated problem # 5

Due: Monday, September 30, 2013

5. (# M4.10)

- (a) Write a Matlab program to construct the $n \times n$ lower triangular matrix $A = (a_{ij})$ as follows:
 - $\begin{aligned} a_{ij} &= 1 \quad \text{if} \quad i = j, \\ a_{ij} &= -1 \quad \text{if} \quad i > j, \\ a_{ij} &= 0 \quad \text{if} \quad i < j. \end{aligned}$
- (b) Perform an experiment to show that the solution of Ax = b with A as above and the vector b created such that Ax = b, where x = rand(n, 1), becomes more and more inaccurate as n increases due to increasing ill-conditioning of A. Let \hat{x} denote the computed solution.

Present your results in the following form

n	$\operatorname{Cond}(A)$	Relative error $\frac{ x-\hat{x} _2}{ x _2}$	Residual norm $\frac{ b-A\hat{x} _2}{ b _2}$
10			
20			
30			
40			
50			

Print x and \hat{x} for each value of n as column vectors next to each other.

<u>Note</u>: Please include printouts of your programs and output results.