MATH 326: Homework 5
 SPRING 2013

1. Prove that every polyhedral set is convex.
2. Prove the following: Let $C \in \mathbb{R}^{n}$ be a convex cone and let $x_{1}, x_{2} \in C$. If $\alpha, \beta \in \mathbb{R}$ and $\alpha, \beta \geq 0$, then $\alpha x_{1}+\beta x_{2} \in C$. [Hint: Use the definition of convex cone and the definition of convexity with $\lambda=1 / 2$, then multiply by 2 .]
3. Consider the polyhedral set P defined by the linear inequalities:

$$
\begin{aligned}
3 x_{1}+x_{2} & \geq 11 \\
x_{1}+x_{2} & \geq 5 \\
x_{1} & \geq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Identify all the extreme points in the polyhedral set. Identify any degenerate extreme points.

