Math 432 - Numerical Linear Algebra - Fall 2013

Homework 5
Assigned: Saturday, September 28, 2013
Due: Friday, October 4, 2013

- Include a cover page and a problem sheet.
- Include all of your scripts and output results.
- Place a comment at the top of each function or script that you submit which includes the name of the function or script

1. Let A be the 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Use Gaussian elimination to obtain A^{-1} by solving the two systems $A x_{1}=e_{1}$ and $A x_{2}=e_{2}$, where e_{1} and e_{2} are the columns of the 2×2 identity matrix. Note that you can perform both at the same time by considering the augmented system $[A \mid I]$. Show that A^{-1} exists if and only if $\operatorname{det}(A) \neq 0$.
2. Let $M_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ m_{2,1} & 1 & 0 \\ m_{3,1} & 0 & 1\end{array}\right), \quad M_{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m_{3,2} & 1\end{array}\right), \quad P_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
(a) Show that

$$
M_{1}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-m_{2,1} & 1 & 0 \\
-m_{3,1} & 0 & 1
\end{array}\right)
$$

(b) Show that

$$
M_{1}^{-1} M_{2}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-m_{2,1} & 1 & 0 \\
-m_{3,1} & -m_{3,2} & 1
\end{array}\right)
$$

(c) Show that $P_{1}^{-1}=P_{1}$.
3. Find the $L U$ factorization of A and use it to solve $A x=b$.

$$
A=\left(\begin{array}{llll}
4 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 4
\end{array}\right), b=\left(\begin{array}{c}
2 \\
-3 \\
3 \\
-2
\end{array}\right)
$$

4. Consider the problem $A x=b$ where A is a tridiagonal matrix. What is the operation count for the forward elimination and the back substitution steps of Gaussian elimination in this case? Count add/sub and mult/div operations separately, then give the overall order of the total operations needed. (Use $O\left(n^{p}\right)$ notation).

5. Back and Forward Substitution: Matlab Program

Write two programs, one that performs back substitution on an upper triangular matrix U and another that performs forward elimination on a lower triangular matrix L (you may assume that the diagonal entries of L are all 1). The program for back substitution should begin with:

```
function [x] = backsub(U, b)
n=length(b);
(your code here)
```

where $U \mathbf{x}=\mathbf{b}$ and U is an upper triangular matrix. Similarly, a program for forward elimination should start with

```
function [x] = forwardsub(L, b)
n=length(b);
(your code here)
```

where $L \mathbf{x}=\mathbf{b}$ and L is lower triangular. Test your code on the following systems:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 4 & 1
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \text { and }\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 3 & -1 \\
0 & 0 & 2
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Remember, in Matlab you can solve matrix equations as follows (assuming you have defined the matrix A and the rhs vector \mathbf{b}):
>> $\mathrm{A} \backslash \mathrm{b}$

You can use Matlab solutions to check your results. Print and hand-in the text file containing your program as well as outputs.

