Math 539 - Theory of Ordinary Differential Equations - Fall 2017

Homework 5

Due: Friday, October 20, 2017

1. Show that the boundary value problem

$$
\begin{gathered}
L u=u^{\prime \prime}+2 u^{\prime}+u=f(x) \quad x \in(0,1) \\
B_{1} u=u(0)+m u^{\prime}(0)=c_{1} \quad B_{2} u=u(1)=c_{2},
\end{gathered}
$$

has a Green's function provided the parameter $m \neq \frac{1}{2}$. Find the Green's function when it exists. Why would you expect that your expression for $G(x, \xi)$ may not be symmetric in x and ξ ?
2. Use a Green's function to solve the problem

$$
\begin{gathered}
\frac{d^{2} u}{d x^{2}}-\alpha^{2} u=f(x) \quad x \in(-\infty, \infty) \\
\text { where } u \rightarrow 0 \text { as } x \rightarrow \pm \infty
\end{gathered}
$$

Assume that $\alpha>0$ and f is sufficiently well-behaved as $x \rightarrow \pm \infty$ for a solution to exist.
3. When $\epsilon>0$, find the Green's function $G(x, \xi)$ for the boundary value problem

$$
\begin{aligned}
L u=\frac{d^{2} u}{d x^{2}}=f(x) \quad x \in(0,1) \\
B_{1} u=\frac{d u}{d x}(0)=c_{1} \quad B_{2} u=\epsilon u(1)+\frac{d u}{d x}(1)=c_{2} .
\end{aligned}
$$

(a) Use $G(x, \xi)$ to write down the solution $u_{\epsilon}(x)$ of the boundary value problem. (b) Rearrange the solution as a two term expansion in ϵ, i.e., $u_{\epsilon}(x)=\frac{u_{s}}{\epsilon}+u_{r \epsilon}(x)$, where u_{s} is independent of ϵ. The first term in the expansion becomes unbounded as $\epsilon \rightarrow 0$ while the second term remains bounded.

As $\epsilon \rightarrow 0$ there is a necessary and sufficient condition on the data which ensures that the solution $u_{\epsilon}(x)$ remains bounded in the limit. It is just that $u_{s}=0$.
(c) When $\epsilon=0$ show that the homogeneous problem has a non-zero solution. Find the solvability condition given by the Fredholm alternative for the existence of a solution of the boundary value problem in this case.
(d) When $\epsilon=0$, construct the modified Green's function $G_{M}(x, \xi)$ and use this to write down the (non-unique) solution $u_{0}(x)$ of the boundary value problem. Read the example done in-class to see that the modified Green's function here is minus that of the in-class example.
(e) Rearrange the solution $u_{0}(x)$, by using the solvability condition, to show
that it is the same (up to its non-uniqueness) as the regular part of the solution $u_{r \epsilon}(x)$ found in part (b).

This is the simplest example of its type but its features are typical. It should help to convince you (i) why a solvability condition is needed, and (ii) that the theoretical machinery of modified Green's functions 'works' to give the right answer.
4. Find the modified Green's function for the case $m=\frac{1}{2}$ of question 1 .

