MATH 326: Homework 6
 SPRING 2013

1. Consider the polyhedral set P from HW \# 5 (Problem 3) defined by the linear inequalities:

$$
\begin{aligned}
3 x_{1}+x_{2} & \geq 11 \\
x_{1}+x_{2} & \geq 5 \\
x_{1} & \geq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

(a) Compute the equations and inequalities defining the set D of normalized directions (i.e. $e^{T} d=1$).
(b) Use D to identify the extreme directions of P. [Hint: Draw D as we did in class.]
(c) Using the feasible region of D identify one non-extreme direction of P.
2. Consider the triangle (bounded polyhedral set) with extreme points $(-1,0),(1,0)$ and $(0,1)$. Show that the point $(0,1 / 2)$ can be expressed as a convex combination of the extreme points. That is, find λ_{1}, λ_{2} and λ_{3} so that:

$$
\begin{aligned}
& \lambda_{1}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+\lambda_{2}\left[\begin{array}{c}
1 \\
0
\end{array}\right]+\lambda_{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right] \\
& \lambda_{1}+\lambda_{2}+\lambda_{3}=1 \\
& \lambda_{1}, \lambda_{2}, \lambda_{3} \in[0,1]
\end{aligned}
$$

3. Let $X=\left\{x \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$ and suppose that $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{l}$ are the extreme directions of X (assuming it has any). Show that the problem:

$$
\left\{\begin{array}{l}
\min \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
\boldsymbol{x} \geq \mathbf{0}
\end{array}\right.
$$

has a finite optimal solution if (and only if) $\boldsymbol{c}^{T} \boldsymbol{d}_{j} \geq 0$ for $k=1, \ldots, l$. [Hint: Modify the proof of Theorem about an optimal solution of Problem P from lecture $2 / 22 / 2013]$.
4. Consider the linear programming problem:

$$
\left\{\begin{array}{cl}
\min & z\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2} \\
\text { s.t. } & x_{1}-x_{2} \leq 1 \\
& 2 x_{1}+x_{2} \geq 6 \\
& x_{1}, x_{2} \geq 0
\end{array}\right.
$$

We've shown in class that the extreme directions of the polyhedral feasible region are: $\boldsymbol{d}_{1}=[0,1]$ and $\boldsymbol{d}_{2}=[1 / 2,1 / 2]$. Use this fact and the statement from Problem 3 to show that this problem is unbounded. [Hint: $c^{T}=[2,-1]$. Show that $c^{T} \boldsymbol{d}_{j}<0$ for either $j=1$ or $j=2$.]

