MATH 326: HOMEWORK 6 SPRING 2013

- 1. Consider the polyhedral set P from HW # 5 (Problem 3) defined by the linear inequalities:
 - $3x_1 + x_2 \ge 11$ $x_1 + x_2 \ge 5$ $x_1 \ge 3$ $x_1 \ge 0$ $x_2 \ge 0$
 - (a) Compute the equations and inequalities defining the set D of normalized directions (i.e. $e^T d = 1$).
 - (b) Use D to identify the extreme directions of P. [Hint: Draw D as we did in class.]
 - (c) Using the feasible region of D identify one non-extreme direction of P.
- 2. Consider the triangle (bounded polyhedral set) with extreme points (-1,0), (1,0) and (0,1). Show that the point (0,1/2) can be expressed as a convex combination of the extreme points. That is, find λ_1 , λ_2 and λ_3 so that:

$$\lambda_1 \begin{bmatrix} -1\\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1\\ 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ \frac{1}{2} \end{bmatrix}$$
$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
$$\lambda_1, \lambda_2, \lambda_3 \in [0, 1]$$

3. Let $X = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0\}$ and suppose that d_1, \ldots, d_l are the extreme directions of X (assuming it has any). Show that the problem:

$$\left\{\begin{array}{ll} \min \ \boldsymbol{c}^T \boldsymbol{x}\\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}\right.$$

has a finite optimal solution if (and only if) $c^T d_j \ge 0$ for k = 1, ..., l. [Hint: Modify the proof of Theorem about an optimal solution of Problem P from lecture 2/22/2013].

4. Consider the linear programming problem:

$$\begin{array}{l} \min \ z(x_1, x_2) = 2x_1 - x_2 \\ \text{s.t.} \ x_1 - x_2 \leq 1 \\ 2x_1 + x_2 \geq 6 \\ x_1, x_2 \geq 0 \end{array}$$

We've shown in class that the extreme directions of the polyhedral feasible region are: $d_1 = [0, 1]$ and $d_2 = [1/2, 1/2]$. Use this fact and the statement from Problem 3 to show that this problem is unbounded. [Hint: $c^T = [2, -1]$. Show that $c^T d_j < 0$ for either j = 1 or j = 2.]