Math 432 - Numerical Linear Algebra - Fall 2013

Homework 6

Assigned: Saturday, October 5, 2013
Due: Friday, October 11, 2013

- Include a cover page and a problem sheet.
- Include all of your scripts and output results.
- Place a comment at the top of each function or script that you submit which includes the name of the function or script

1. (a) Prove that the matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

does not have an $L U$ decomposition.
(b) Does the system

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{a}{b}
$$

have a unique solution for all $a, b \in \mathbb{R}$? (Why?)
(c) How can you modify the system in part (b) so that $L U$ decomposition applies?
2. Let $A=\left(\begin{array}{ll}1.2969 & 0.8648 \\ 0.2161 & 0.1441\end{array}\right), b=\binom{0.8642}{0.1440}, x=\binom{2}{-2}, x_{1}=\binom{0}{1}, x_{2}=\binom{0.9911}{-0.4870}$.
(a) Show that x is the exact solution of $A x=b$.
(b) Think of x_{1}, x_{2} as approximations to the exact solution x. Compute the errors e_{1}, e_{2} and residuals r_{1}, r_{2}, corresponding to x_{1}, x_{2} (see the definition of a residual below).
(c) Find $\|A\|,\left\|A^{-1}\right\|, \operatorname{Cond}(A)$.
(d) Let A be an invertible matrix, x be the exact solution of $A x=b, \tilde{x}$ an approximate solution, $e=x-\tilde{x}$ an error and $r=b-A \tilde{x}$ the residual. Then (see also the lecture from $9 / 18 / 2013$)

$$
\frac{\|e\|}{\|x\|} \leq \operatorname{Cond}(A) \frac{\|r\|}{\|b\|}
$$

Show that this result holds for the approximate solutions x_{1}, x_{2} given above.
3. Derive the following result.

$$
\left.\begin{array}{l}
A x=b \\
\tilde{A} \tilde{x}=b
\end{array}\right\} \Rightarrow \frac{\|x-\tilde{x}\|}{\|\tilde{x}\|} \leq \operatorname{Cond}(A) \frac{\|A-\tilde{A}\|}{\|A\|}
$$

Note: This result says that in solving a linear system $A x=b$, the condition number of the matrix controls the relative error in the solution due to perturbations in the matrix.
4. Let A be a 3×3 matrix. Suppose we apply $L U$ factorization with partial pivoting and obtain $M_{2} P_{2} M_{1} P_{1} A=U$, where U is upper triangular and

$$
M_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
m_{21} & 1 & 0 \\
m_{31} & 0 & 1
\end{array}\right), M_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & m_{32} & 1
\end{array}\right), P_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), P_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

(a) Compute $\tilde{M}_{1}=P_{2} M_{1} P_{2}$.
(b) Show that $P_{2} M_{1}=\tilde{M}_{1} P_{2}$. Note that this implies $M_{2} \tilde{M}_{1} P_{2} P_{1} A=U$.
(c) Compute $P=P_{2} P_{1}$ and $L=\tilde{M}_{1}^{-1} M_{2}^{-1}$
(d) Show that $P A=L U$.
(e) Find P, L, U such that $P A=L U$ and use the factorization to solve $A x=b$, where

$$
A=\left(\begin{array}{ccc}
0 & 2 & -1 \\
1 & 1 & 1 \\
2 & 0 & 1
\end{array}\right), \quad b=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)
$$

5. (Partial Pivoting: MATLAB program)

Write a program to find the $L U$ decomposition of a given $n \times n$ matrix A using partial pivoting. The program should return the updated matrix A and the pivot vector p. In MATLAB, name your file mylu.m, the first few lines of which should be as follows:

```
function [a,p]=mylu(a)
%
[n n]=size(a); p=(1:n)'; (your code here!)
```

The code above sets n equal to the dimension of the matrix and initializes the pivot vector p. Make sure to store the multipliers $m_{i j}$ in the proper matrix entries. You should experiment with a few small matrices to make sure your code is correct. Check if matrices resulting in $L U$ decomposition satisfy $P A=L U$. As a test of your code, in MATLAB execute the statements

```
>>diary mylu.txt
>>format short e
>>type mylu.m
>>a=[2 2 -3;3 1 -2;6 8 1];
>>[a,p]=mylu(a)
>>diary off
```

Print and hand-in the text file containing your program.

