Math 539 - Theory of Ordinary Differential Equations - Fall 2017

Homework 6

Due: Wednesday, November 1, 2017

1. For the boundary value problem

$$
\begin{gathered}
u^{\prime \prime}+4 \pi^{2} u=f(x) \quad x \in(0,1) \\
B_{1} u=u(1)-u(0)=c_{1} \quad B_{2} u=u^{\prime}(1)-u^{\prime}(0)=c_{2}
\end{gathered}
$$

show that there is no Green's function and find the (two) solvability conditions that are necessary for a solution to exist.
2. (i) Rework example 2 from section 4.1 of the lecture notes with inhomogeneous boundary conditions, i.e., find the solution of the boundary value problem

$$
\begin{gathered}
\frac{d^{2} u}{d x^{2}}=f(x) \quad x \in(0, l) \\
B_{1} u=u(0)=c_{1} \quad B_{2} u=u(l)=c_{2}
\end{gathered}
$$

as a series in terms of orthonormalized eigenfunctions of the homogeneous problem. First, recall from the lecture notes that the eigenvalue problem is

$$
u_{n}^{\prime \prime}+\lambda_{n} u_{n}=0 \quad x \in(0, l), \quad B_{1} u_{n}=u_{n}(0)=0, \quad B_{2} u_{n}=u_{n}(l)=0
$$

and the orthonormalized eigensystem is

$$
\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, \quad u_{n}(x)=\sqrt{\frac{2}{l}} \sin \frac{n \pi x}{l}, \quad n=1,2, \ldots
$$

which generates a Fourier sine series.
(ii) Decompose the solution into two parts $u=u_{f}+u_{c}$, where u_{f} is the response to f alone and u_{c} is the response to the boundary data $\left(c_{1}, c_{2}\right)$ alone. Write down the boundary value problem for u_{c} and hence find the closed form expression for u_{c} in terms of solutions of the homogeneous differential equation. Use this and the solution of (i) to give the eigenfunction expansion of u_{c}, which is also its Fourier sine series.
3. Find the orthonormalized eigenvalues and eigenfunctions of the operator

$$
\begin{gathered}
L u=-\frac{d^{2} u}{d x^{2}} \quad x \in(0, l) \\
B_{1} u=u(0)-u(l) \quad B_{2} u=u^{\prime}(0)-u^{\prime}(l)
\end{gathered}
$$

Note that zero is also an eigenvalue.

Comments: The differential operator is of Sturm-Liouville type, but because the boundary conditions are periodic, and hence not separable, the eigenvalue problem is not a Sturm-Liouville eigenvalue problem, although it shares many of the features of one. One feature it does not share is that, while the eigenvalue zero has just one eigenfunction, each non-zero eigenvalue has two linearly independent eigenfunctions (i.e., each of the non-zero eigenvalues is 'degenerate' with eigenfunctions of multiplicity two). This is the eigensystem that forms the basis of the Fourier series of an l-periodic function (with both sines and cosines), where we often take $l=2 \pi$.
4. Form the inner product $\langle u, L u\rangle$ to show that the operator

$$
\begin{gathered}
L u=-\frac{d^{2} u}{d x^{2}} \quad x \in(0,1) \\
B_{1} u=u(0) \quad B_{2} u=u^{\prime}(1)-\alpha u(1)
\end{gathered}
$$

is positive definite when $\alpha<0$.
Find the eigenvalues and normalized eigenfunctions of the operator. Locate the eigenvalues by graphical solution or sketch, distinguishing (briefly) between the cases $\alpha<1, \alpha=1$, and $\alpha>1$. Describe the position in the λ-plane of the smallest eigenvalue as α increases from $-\infty$ through $\alpha=1$ to $\alpha=\infty$.
5. Find the eigenvalues and normalized eigenfunctions of the eigenvalue problem

$$
\begin{array}{r}
L u=-x\left(x u^{\prime}\right)^{\prime}=\lambda u \quad x \in(1,2) \\
B_{1} u=u(1)=0 \quad B_{2} u=u(2)=0 .
\end{array}
$$

When carrying out the normalization, note that this is in fact a regular SturmLiouville eigenvalue problem, since the differential equation is of the form $\left(p u^{\prime}\right)^{\prime}-$ $q u+\lambda w u=0$ with $p=x, q=0$, and $w=\frac{1}{x}$, so that the inner product has weight $1 / x$ and is $\langle f, g\rangle=\int_{1}^{2} f g \frac{1}{x} d x$.

