Math 571 - Functional Analysis I - Fall 2017

Homework 7

Due: Friday, October 20, 2017

1. (\# 2, Section 2.7) Let X and Y be normed spaces. Show that a linear operator $T: X \rightarrow Y$ is bounded if and only if T maps bounded sets in X into bounded sets in Y.
2. (\# 3, Section 2.7) If $T \neq 0$ is a bounded linear operator, show that for any $x \in \mathcal{D}(T)$ such that $\|x\|<1$ we have strict inequality $\|T x\|<\|T\|$.
3. (\# 5, Section 2.7) Show that the operator $T: l^{\infty} \rightarrow l^{\infty}$ defined by $y=\left(\eta_{j}\right)=$ $T x, \eta_{j}=\xi_{j} / j, x=\left(\xi_{j}\right)$, is linear and bounded.
4. (\# 6, Section 2.7) Show that the range $\mathcal{R}(T)$ of a bounded linear operator $T: X \rightarrow Y$ need not be closed in Y. Hint: Use T in Prob. \# 5, Section 2.7.
5. (\#7, Section 2.7) Let T be a bounded linear operator from a normed space X onto a normed space Y. If there is a positive b such that

$$
\|T x\| \geq b\|x\| \quad \text { for all } \quad x \in X,
$$

show that then $T^{-1}: Y \rightarrow X$ exists and is bounded.
6. (\# 2, Section 2.8) Show that the functionals defined on $C[a, b]$ by

$$
\begin{gathered}
f_{1}(x)=\int_{a}^{b} x(t) y_{0}(t) d t, \quad y_{0} \in C[a, b] \\
f_{2}(x)=\alpha x(a)+\beta x(b), \quad \alpha, \beta \text { fixed }
\end{gathered}
$$

are linear and bounded.
7. (\# 3, Section 2.8) Find the norm of the linear functional f defined on $C[-1,1]$ by

$$
f(x)=\int_{-1}^{0} x(t) d t-\int_{0}^{1} x(t) d t .
$$

