Math 432 - Numerical Linear Algebra - Fall 2013

Homework 8
Assigned: Saturday, November 2, 2013
Due: Friday, November 8, 2013

1. Using the Matlab command $\mathbf{q r}$, find the QR factorization of

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

For this matrix and with vector $b=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{T}$, using the results of QR factorization, find (i) orthonormal bases for $\mathcal{R}(A)$ and $\mathcal{N}\left(A^{T}\right)$, (ii) P_{A} and P_{N}, (iii) vectors b_{R} and b_{N}.
2. Suppose $A=Q R$, where Q is $m \times n$ and R is $n \times n$. Show that if the columns of A are linearly independent, then R must be invertible. [Hint: Study the equation $R x=0$ and use the fact that $A=Q R$.]
3. Let

$$
x_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad x_{2}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right), \quad x_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

The set $\left\{x_{1}, x_{2}, x_{3}\right\}$ is linearly independent and thus is a basis for a subspace W of \mathbb{R}^{4}. Use the Gram-Schmidt process to construct a set of mutually orthonormal vectors q_{1}, q_{2}, q_{3}, i.e. an orthonormal basis for W. Use your results to construct a QR factorization of the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

4. (The purpose of this exercise is to compute the accuracy and efficiency of different methods for $Q R$ factorization of a matrix. MATCOM programs are available on the textbook's web site: http://www.siam.org/books/ot116/)
(a) Compute the QR factorization for each matrix A of the following data sets as follows:
i. $[Q, R]=\mathbf{q r}(A)$ from Matlab or $[Q, R]=\operatorname{housqr}(A)$ or housqrn (MATCOM implementations of Householder's method).
ii. $[Q, R]=\operatorname{clgrsch}(A)$ (classical Gram-Schmidt implementation from MATCOM)

Method	$\left\\|(\hat{Q})^{T} \hat{Q}-I\right\\|_{F}$	$\frac{\\|A-\hat{Q} \hat{R}\\|_{F}}{\\|A\\|_{F}}$
housqr		
clgrsch		
mdgrsch		

Table 1: Comparison of different QR factorization methods.
iii. $[Q, R]=\operatorname{mdgrsch}(A)$ from MATCOM (modified Gram-Schmidt implementation from MATCOM)
(b) Using the results of (a), complete the table above for each matrix. \hat{Q} and \hat{R} stand for the computed Q and R.
Data set:
i. $A=\operatorname{rand}(25)$,
ii. A is a Hilbert matrix of order 25: $A=\mathbf{h i l b}(25)$ in Matlab,
iii. $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 10^{-4} & 0 & 0 \\ 0 & 10^{-4} & 0 \\ 0 & 0 & 10^{-4}\end{array}\right)$
iv. a Vandermonde matrix of order 25, that can be generated in Matlab as follows:
$\mathrm{x}=1: 25$;
A=fliplr(vander(x));

