Math 571 - Functional Analysis I - Fall 2017

Homework 8

Due: Friday, October 27, 2017

1. (\#5, Section 2.8) Show that on any sequence space X we can define a linear functional f by setting $f(x)=\xi_{n}$ (n fixed), where $x=\left(\xi_{j}\right)$. Is f bounded if $X=l^{\infty}$?
2. (\# 8, Section 2.8) The null space $N\left(M^{*}\right)$ of a set $M^{*} \subset X^{*}$ is defined to be the set of all $x \in X$ such that $f(x)=0$ for all $f \in M^{*}$. Show that $N\left(M^{*}\right)$ is a vector space.
3. (\#3, Section 2.9) Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be the dual basis of $\left\{e_{1}, e_{2}, e_{3}\right\}$ for \mathbb{R}^{3}, where $e_{1}=(1,1,1), e_{2}=(1,1,-1), e_{3}=(1,-1,-1)$. Find $f_{1}(x), f_{2}(x), f_{3}(x)$, where $x=(1,0,0)$.
4. (\#7, Section 2.9) Find a basis for the null space of the functional f defined on \mathbb{R}^{3} by $f(x)=\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2}+\alpha_{3} \xi_{3}$, where $\alpha_{1} \neq 0$ and $x=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$.
5. (\# 11, Section 2.9) If x and y are different vectors in a finite dimensional vector space X, show that there is a linear functional f on X such that $f(x) \neq f(y)$.
6. (\#4, Section 2.10) Let X and Y be normed spaces and $T_{n}: X \rightarrow Y(n=$ $1,2, \ldots$) bounded linear operators. Show that convergence $T_{n} \rightarrow T$ implies that for every $\epsilon>0$ there is an N such that for all $n>N$ and all x in any given closed ball we have $\left\|T_{n} x-T x\right\|<\epsilon$.
7. (\#8, Section 2.10) Show that the dual space of the space c_{0} is l^{1}. (Cf. Prob. 1 in Section 2.3.)
