## Math 432 - Numerical Linear Algebra - Fall 2013

## Homework 9

Assigned: Saturday, November 9, 2013
Due: Friday, November 15, 2013

1. (a) Using the Matlab command svd, find the SVD of the following matrices:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right), \quad A=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
& A=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad A=\operatorname{diag}(1,0,2,0,-5) \\
& A=\left(\begin{array}{ll}
1 & 1 \\
\epsilon & 0 \\
0 & \epsilon
\end{array}\right), \quad \epsilon=10^{-5}
\end{aligned}
$$

(b) Using the results of (a), find (i) rank, (ii) $\|.\|_{2}$ and $\|.\|_{F}$, (i) orthonormal bases for $\mathcal{R}(A)$ and $\mathcal{N}\left(A^{T}\right)$, (ii) $P_{A}$ and $P_{N}$ for each matrix.
2. Let $A$ be an $m \times n$ matrix.

Using the SVD of $A$, prove that
(a) $\left\|A^{T} A\right\|_{2}=\|A\|_{2}^{2}$;
(b) $\operatorname{Cond}_{2}\left(A^{T} A\right)=\left(\operatorname{Cond}_{2}(A)\right)^{2}$;
(c) $\operatorname{Cond}_{2}(A)=\operatorname{Cond}_{2}\left(U^{T} A V\right)$, where $U$ and $V$ are orthogonal.
3. (a) Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right)
$$

Express $A$ in terms of its singular values and singular vectors.
(b) Compute $\left(A^{T} A\right)^{-1}$ using the SVD of A.
4. Let

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 0.0001 & 1 & 1 \\
0 & 0 & 0.0001 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Verify using the Matlab command rank that the $\operatorname{rank}(A)=4$.
(b) Now run the following Matlab command: $[U, S, V]=\operatorname{svd}(A)$. Set $S(4,4)=$ 0; compute $B=U * S * V^{\prime}$. What is the rank of $B$ ?
(c) What is the distance of $B$ to $A$ ? What is the distance of $A$ from the nearest singular matrix? What is that nearest singular matrix?
5. Compute the rank of each of the following matrices using the SVD of matrix $A$. Check your answers by using the Matlab command rank (which uses the singular values of $A$ ).
Test data:
(a) The Kahan matrix (see (7.9) pg. 217), with $n=100$, and $c=0.2$.
(b) A $15 \times 10$ matrix $A$ created as follows: $A=x y^{T}$, where

$$
x=\operatorname{round}(10 * \operatorname{rand}(15,1)), \quad y=\operatorname{round}(10 * \operatorname{rand}(10,1)) .
$$

