Math 539 - Theory of Ordinary Differential Equations - Fall 2017

Homework 9

Due: Monday, December 4, 2017

1. Consider the following two examples for the differential equation

$$
L u=-\left(p(x) u^{\prime}\right)^{\prime}+q(x) u-\mu w(x) u=0, \quad x \in(a, b)
$$

where μ is a parameter.
(a) The Legendre equation is $-\left(\left(1-x^{2}\right) u^{\prime}\right)^{\prime}-\mu u=0$ for $x \in(-1,1)$ where the weight function is $w(x)=1$. Show that both end-points, $x=-1$ and $x=1$, are singular and explain why. Set the parameter $\mu=0$ and show that two linearly independent homogeneous solutions are $u_{1}(x)=1$ and $u_{2}(x)=\ln (1+x)-\ln (1-x)$. Consider the integrals $\int_{-1}^{l} u_{i}^{2} d x$ and $\int_{l}^{1} u_{i}^{2} d x$ for $i=1,2$ and $-1<l<1$ to show that both of the end-points are in the limit-circle case.
(b) Bessel's equation of order zero with parameter μ is $-\left(x u^{\prime}\right)^{\prime}-\mu x u=0$ for $x \in(0, b)$, where $0<b<\infty$ and the weight function is $w(x)=x$. Show that for the end-points, $x=0$ is singular and $x=b$ is regular and explain why. Set $\mu=0$ and show that two linearly independent homogeneous solutions are $u_{1}(x)=1$ and $u_{2}=\ln x$. Consider the integral $\int_{0}^{b} u_{i}^{2} x d x$ for $i=1,2$ to show that the end-point $x=0$ is in the limit circle case.
2. Let

$$
\begin{aligned}
L u & =-\frac{d^{2}}{d x^{2}} \quad x \in(0, \infty) \\
\frac{d u}{d x}(0) & =0, \quad \int_{0}^{\infty} u^{2}(x) d x<\infty
\end{aligned}
$$

Find the Green's function $G(x, \xi, \mu)$ for the operator $L-\mu$. Use the Green's function and the result

$$
\delta(x-\xi)=-\frac{1}{2 \pi i} \int_{C_{\infty}} G(x, \xi, \mu) d \mu
$$

to find the spectral decomposition of $\delta(x-\xi)$ and define the corresponding transform pair. Here C_{∞} is a circle in the complex μ-plane with center at the origin and radius R in the limit $R \rightarrow \infty$.
3. Construct the Green's function $G(x, \xi ; \mu)$ for the boundary value problem

$$
-\frac{d^{2} G}{d x^{2}}-\mu G=\delta(x-\xi) \quad G \in L^{2}(-\infty, \infty)
$$

where μ is a complex parameter with $\arg (\mu) \in[0,2 \pi)$. Show that both singular end points, $x=-\infty$ and $x=\infty$, are in the limit-point case and

$$
G(x, \xi ; \mu)=\frac{i}{2 \sqrt{\mu}} e^{i \sqrt{\mu}|x-\xi|} \quad-\infty<x, \xi<\infty
$$

where $\operatorname{Im}(\sqrt{ } \mu) \geq 0$.
Note that $G(x, \xi ; \mu)$ has no poles in the complex μ-plane but has a branch cut along the positive real axis, and show that

$$
\begin{array}{cl}
\text { as } \mu \text { approaches the cut from above } & G \rightarrow \frac{i}{2|\mu|^{1 / 2}} e^{i|\mu|^{1 / 2}|x-\xi|}, \\
\text { and as } \mu \text { approaches the cut from below } & G \rightarrow \frac{-i}{2|\mu|^{1 / 2}} e^{-i|\mu|^{1 / 2}|x-\xi|},
\end{array}
$$

where $|\mu|^{1 / 2}$ is real and positive.
Integrate $G(x, \xi ; \mu)$ around a closed contour in the μ-plane which consists of a large circular arc C_{∞} with center at the origin that does not cross the cut and a section C_{B} which goes from ∞ to zero below the cut and then from 0 to ∞ above the cut. Since $G(x, \xi ; \mu)$ has no poles inside the closed contour, the integral around it is zero, and the theory tells us that

$$
\frac{1}{2 \pi i} \int_{C_{\infty}} G(x, \xi ; \mu) d \mu=-\delta(x-\xi)
$$

Hence show that

$$
\delta(x-\xi)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k|x-\xi|} d k
$$

Now multiply this equation by a function $f(\xi)$ and integrate with respect to ξ from $-\infty$ to ∞, to derive the Fourier transform pair

$$
\begin{aligned}
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x} F(k) d k \\
& F(k)=\int_{-\infty}^{\infty} e^{i k \xi} f(\xi) d \xi
\end{aligned}
$$

(The function f needs to be piecewise C^{1} and $L^{2}(-\infty, \infty)$ for this to work.)

