Math 571 - Functional Analysis I - Fall 2017

Homework 9

Due: Friday, November 3, 2017

1. (\# 9, Section 2.10) Show that a linear functional f on a vector space X is uniquely determined by its values on a Hamel basis for X.
2. (\# 2, Section 3.1) (Pythagorian theorem) If $x \perp y$ in an inner product space X, show that (Fig. 1)

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} .
$$

Extend the formula to m mutually orthogonal vectors.

Figure 1: Illustration of the Pythagorean theorem in the plane
3. (\# 3, Section 3.1) If X in problem 2 is real, show that, conversely, the given relation implies that $x \perp y$. Show that this may not hold if X is complex. Give examples.
4. (\# 4, Section 3.1) If an inner product space X is real, show that the condition $\|x\|=\|y\|$ implies $\langle x+y, x-y\rangle=0$. What does it mean geometrically if $X=\mathbb{R}^{2}$? What does the condition imply if X is complex?
5. (\# 6, Section 3.1) Let $x \neq 0, y \neq 0$. (a) If $x \perp y$, show that $\{x, y\}$ is a linearly independent set. (b) Extend the result to mutually orthogonal vectors x_{1}, \ldots, x_{m}.
6. (\# 4, Section 3.2) Show that $y \perp x_{n}$ and $x_{n} \rightarrow x$ together imply $x \perp y$.
7. (\# 7, Section 3.2) Show that in an inner product space, $x \perp y$ if and only if we have $\|x+\alpha y\|=\|x-\alpha y\|$ for all scalars α. (See Fig. 2.)

$|x+\alpha y|=|x-\alpha y|$

$|x+\alpha y| \neq|x-\alpha y|$

Figure 2: Illustration of Problem 7 in the Euclidean plane

