MATH 471
REVIEW OF LINEAR SYSTEMS AND MATRIX ALGEBRA

Our objective is to be able to efficiently solve large linear systems of equations on a
computer. As we have seen, linear systems can crop up in approximating solutions to
non-linear systems. Other uses we will have for these technique will arise when we discuss
function approximation and approximating solutions to systems of ordinary differential
equations.

In general we will be concerned with the solution to a systems of n equations and n
unknowns

a1y + aiere + aizrz + ... +apT, = b1
ao1x1 + agexre + aszrs + ... + aspxy, = bo
as1x1 + azexo + aszzrs + ... +aspr, = b
an1Z1 + Gnp2%a + Gn3Ts + ... + Appn = by
where a;; and b; are constants and z1,x2,73,...,%, are the unknowns we seek. There

are three possibility; the system has no solution, the system has a unique solution, or
the systems has infinitely many solutions. Matrix algebra will paly an essential role in
investigating of this problem. The tools from matrix algebra will answer questions about
uniqueness of solutions and will aid us in the development algorithms for determining
solutions to linear systems of equations.

Review of Matrix Algebra

Before jumping into methods for solving systems of equations, it will be helpful to review
some basics of matrix algebra, such as addition, multiplication, what is a matrix inverses,
etc. Lets start with some examples of matrices.

A matrix is an ordered block of numbers consisting of rows and columns. Examples of
three different matrices are

3

1 2 3 1
A=|17 19 1 B:[igg] c=17
0 1 4 .

Def. Row of a matrix: A row of a matrix is a line of number form left to right. An
example of a row of a matrix is the bold text in matrix below,

1 2 3
A=|17 19 %
0 1 4
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Rows are label by indexes which start counting from 1. The bold text in our example is
the third row of matrix A.

Def. Column of a matrix: A column of a matrix is a line of number form top to bottom.
An example of a column of a matrix is the bold text in matrix below,

1 2 3
A= |7 19 ;
0 1 4

Like rows, columns are label by indexes which start counting from 1. The bold text in our
example is the second column of matrix A.

Def. Dimension of a matrix: The dimension of a matrix is defined to be the number of
rows by the number of columns. For our three examples, A, B and C, the dimension are;

e Matrix A has 3 rows and 3 columns, so matrix A has dimension 3 x 3
e Matrix B has 2 rows and 3 columns, so matrix B has dimension 2 X 3
e Matrix C has 4 rows and 1 columns, so matrix C has dimension 4 x 1 .
Def. Transpose of a matrix: The transpose of a matrix A is a matrix which has inter-

changes the rows and columns of A. The transpose of a matrix is denoted by A”. The
transpose of the matrix B is

BT 45 OT— gé
112 7| ’
0 7

where row 1 of B has become column 1 of BT and row 2 of B has become column 2 of
BT,

Observation: An important fact that can easily be shown is the transpose of the trans-
pose of a matrix is the original matrix, i.e.,

(AN =4 .

Def. A symmetric matrix: A matrix is said to be symmetric if A = AT. Example, let A
be

N

Il
SIS
~ 2 ot
w o



MATH 471
REVIEW OF LINEAR SYSTEMS AND MATRIX ALGEBRA

then AT is

AT =

[==J] SN
R ERASIRN
w g o

therefor A = AT and so A is a symmetric matrix.

| Addition of two matrices |

Matrix addition is defined to be termwise addition, i.e., given two matrices of the same
dimension

air a2 ... b1 b2
A= | @1 a2 ... | gnd B=| bar b2

we define their addition to be

a1 +bi1 a2 +bio
A+ B=| a21 +bor ags + b

Lets consider a 2 x 2 example,

[g i]+[$ —14]:[§1(7) 4?(114)]:[120 3]

Multiplication of two matrices ‘

LetA and B be matrices. If A is a m x p matrix and B is a p X n matrix, then we define
the product of A and B to be a matrix whose elements are given by

P
(AB);; = Zaikbkj, (1<i<m)and(1<j<mn).
k=1

where the index ij denotes the location of the element in terms of rows and columns.
designates the row and j designates the column. Lets consider two examples. Let the
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matrices A, B and C be given as

2 3 1
A:[;Qi] B=|11 ,C=1 3 ,
23 2 4 3x2 3 3x1

where I have indicated the dimension of the matrix by placing an appropriate subscript
on each of the three matrices. Lets start by computing AB. Element (AB);; is then given
by

3

(AB)11 =Y awb = (1-2+2-1+3-2) .
k=1

Likewise, elements (AB)12, (AB)21,(AB)g2 are given by

3
(AB)12 =) aikbga = (1-3+2-1+3-4)
k=1

3
(AB)a1 Zza%bm =(3-2+1-1+4-2)
k=1

3
(AB)yz = askbra = (3-3+1-1+4-4)
k=1

or the matrix AB is given by

AB — [ (AB)11 (AB)12 ] _ [ 10 17]
2Xx2 1323 2x2

The matrix AC is given by

o-[3 1]
2x3

B 1-1+2-§+3-3 [u
2 a 2:1+1-5+4-3 2><1_ 15 2x1

3x1

QO N[ =
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Scalar Multiplication of a Matrix and a Constant

Let ¢ € R and let A be matrices an n X m matrix. Then we define a scalar matrix product
to be the termwise product of the scalar with each element of the matrix A.

allr a2 ... Q1m ca11 ca1p ... Ca1m

asr Q22 ... a2m, cag1 C€agy ... Caom
cA=c . ] =

anp1 AAnp2 --- Qpm can1 Cap2 ... CApm

Def. Identity matrix: The identity matrix is a square matrix with ones down the diagonal
and zeros everywhere else.

10 0

01 0
I =

00 1

Def. Matrix Inverse: Let A be a n X p matrix, let B be a p X n matrix and let C be a
p X n matrix . B is said to be the left inverse of A if

BppApp = Iy -
Likewise, C is said to as the right inverse of A if
Anpcpn = 1inn -

We will denote an inverse of A by A~! and in particular we will denote the left and right
inverse by AZl and A;zl respectively. Example,

| — |
S =
—_ O
o O
| I

[0 7]

So we see that the first matrix is a left inverse for any matrix of the from of the second
matrix.

e O =
SN = O

THM. Square Matrix Inverse: A square matrix A has at most one right inverse

AAR =1 .
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THM. The Commutative Property of Square Matrix Inverses: If A and B are n X n
matrices such that AB = I, then BA = 1.
Proof: Given AB = I, to show that BA=1.
Let
C=BA-1+B.

Multiplying through by A gives
AC = ABA—- Al + AB
and recalling that AB = I gives
AC=TA—-AIT+1

or

AC=A—-A+TI=1.

Hence C must be a right inverse of A (by the uniqueness of square inverses). Therefor
C = B and hence equation

(C=BA-I1I+B)= (0=BA-1) = (BA=1)
as was to be shown.

Def. Determent of a Matrix: For a 2 X 2 matrix

we define the determent to be

Al =

THM. Equivalency Theorem: For an n x n matrix A, the following properties are equiv-
alent:

e The inverse of A exists.
e The determinate of A is nonzero.
e The rows of A form a basis for R"™.

e The columns of A form a basis for R™.
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As a map from R" to R", A is injective (one-to-one).

As a map from R" to R", A is surjective (onto).

The equation Az = 0 implies z = 0.

For each b € R"™, there is exactly one x € R™ such that Az = b.

A is a product of elementary matrices.

Representing a Linear System Using Matrix Notation

Given an n X n system of equations, the system can be reexpressed in terms of a n X n
matrix (A) of coefficients, a n x 1 matrix (b) of constants on the right and a n x 1 matrix

of unknowns (z), i.e.,
Az =b .

Consider the following systems of equations,

ax + by = f1
cx + dy = fo.

In matrix notation, the above system is given by

Ll lT]- 1]

If the inverse to A exists, then a unique solution exists and the solutions is given by
x = A~'b. It can be shown that for a 2 x 2 matrix A, if it exists the inverse is given by

1 d -b
A7l =
ad — cb [ —-c a ]

so that the solution for our example is

o mamal Y s el A
y| ab—cd| —c a fo|l ab—cd| —c-fit+a-fa

A Fundamental Theorem About Linear System
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THM. Equivalence of Linear Systems: If one system of equations is obtained from another
by a finite sequence of operations (adding two equations, multiplying an equation by
a constant, adding a multiple of one equation to another), then the two systems are
equivalent (THIS IS VERY IMPORTANT TO EVERYTHING WE DO FROM HERE
ON IN). Example, the following systems are equivalent,

ax + by = f1

cx + dy = fo.
and

ax + by = f1

(c=Aa)z + (d—Ab)y = (f2—Af1)

where system two was obtained by adding — A\ times equation one to equation two.
What the Above Fundamental Theorem Implies about Matrix Formulation

In terms of matrices, the above two systems are given by

el lv]=1

and

[ (c —a/\a) (d—[)Ab) ] [ z ] - [ (f2 fl}‘fl) ]

We see that applying elementary operations to a linear system of equations is equivalent
to applying these operations to the appropriate rows of the matrix A and b. So we can
work with just the coefficients of the matrices and neglect the vector of unknowns.

Def. Augmented Matrix: Given the system of equations Az = b, we define the augmented
matrix to be [A|b]. For our example

][]

the augmented matrix for the system is

a b f1
|:Cd f2:|
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Labelling Elementary Operations for an Augmented System

1. Interchanging rows s and ¢ of matrix A
A: A & Ay

2. Multiplying row s of matrix a by a non-zero constant A
A As = MNA;

3. Replacing row s by adding a multiple of row ¢ to row s

A: Ay — A+ MA,

Example: consider the system of equations

lz +3y =7
2r 4+ by = 2.

Interchange rows one and two

Adding _71 row one to row two

2 5 2 A:AQ—)AQ‘I'_TlAl 2 5
= 1-1 34+

2 1 [2 5
7-1] [0 3

=
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Multiplying row one by %

2 0| -58] A:A;—3A; [1 0] —29
0 1| 12 = 0 1] 12

10



