MATH 471
SUPPLEMENT ON NUMERICAL LINEAR ALGEBRA

In this part of the course we will learn how to solve systems of linear equations of the form:

a11T1 + Q122 + -+ + @1 Ty = b1
a21T1 + G222 + -+ - + ATy, = by
p1T1 + @22+ + GppTy = by,
where a;; and b; are real numbers, and z; are the unknowns, i = 1,2,...,n, j =1,2,...,n. We will

write this system in the matrix-vector form

Az = b, (*)
where A is the n X n matrix,
a1 a1z e Qin
az1 Q2 --- a2n
A=
apl Qp2 --- Qnn
and b is an n—dimensional vector,
by
by
b= . eR"
bn,

Finding solution of (*) means that we find the result of multiplying of the inverse matrix A~! with
b:
z=A"1b.

The inverse A~! to a matrix A is, by definition, any matrix B which satisfies AB = BA = I, where
I is the identity matrix

1 0 0
1 0
I=

If a matrix A has an inverse, it is called nonsingular.
Theorem. The following statements are equivalent:
1) The matrix A is nonsingular;
2) det A # 0;
3) For every vector b the system Az = b has at least one solution;
4) For every vector b the system Az = b has exactly one solution.
5) rank A = rank [A b] = n.

Example: Consider the 2 x 2 system

ax +by=ce
cx+dy=f
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where
A:(Z Z) and b:(?).
We have
det A=ad—bc and A™! = L (d _b>.
ad—bc \ —c a
Then

_de—bf _ —ce+af
~ ad—be v= ad —bc
rank A = the number of linearly independent columns (rows).
Linear independence of vectors:

X

T T
E (67 = E a% =0
i=1 =1

(31) ()

rank A = rank [Ab] =1

Example:

Infinitely many solutions.

Theorem. If rank A = rank [Ab] then there is at least one solution of Az = b. Specifically, if
rank A = rank [Ab] = n there is exactly one solution, and if rank A = rank [Ab] = r < n, then the
set of solution is an affine manifold of dimension n — 7.

1. Gaussian Elimination

It is easier to solve a system of equations Az = b if the matrix A has a special structure:

e The matrix A is diagonal: solve n independent equations of one variable .

1 0 I . 2 . .
<O2><$2>_<1) = 331—2, o = 0.5 .

e The matrix A is upper triangular: backward substitution.

1 3 I o 2 . o _a. o
(L3)(2)=(2) = m-s n-2-3:05-05.

e The matrix A is lower triangular: forward substitution.

(; (2))(2):<?> = 21=2 z=(1-3-2)/2=-25.

Example:

Example:

Example:
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Gaussian elimination: use elementary row transformations to reduce Az = b to an equivalent
upper triangular system and then apply backward substitution.
Elementary row operations:

e multiply an equation by a nonzero number;
e add (subtract) two equations;
e exchange two equations.

Performing elementary row operation on a linear system, transform the system in an equivalent
system in the sense that it has the same solution.

In Gaussian elimination we use the first two properties.

Example:

1 + 229 = 0

2r1 4+ 229 = 3 (El)

The goal is to make zero the coefficient (now 2) in from of z; in the second equation. We can
do this by multiplying the first equation by a number such that the coefficients in front of z; in the
first and in the second equations are the same, and then subtract the first equation from the second,
putting the result as a second equation.

Multiplying the first equation by 2 we obtain

2r1 + 4x9 = 0

Now we write the first equation in (E1) (without changes) and in place of the second equation
we write the equation obtained by subtracting the first equation from the second in (E2):

r1 + 2x9 =0
—21‘2 = 3
The obtained system is in the upper triangular form; hence, we can solve the second equation
obtaining zo = —3/2. Then, substituting in the first equation we get ; = —2z9 = 3.
Example:
T + 2z9 + 3 =0 (E].)
21 + 229 4+ 3x3 = 3 (E2)
—Ir1T — 3.’122 = 2 (E3)

Step 1: To eliminate z; from (E2) we subtract 2 times (E1) from (E2). To eliminate z; from
(E3) we subtract —1 times (E1) from (E3).

1 + 29 4+ xz3 = 0 (El)
— 29 + z3 = 3 (E2)
— T9 + x3 = 2 (E3)

Step 2: To eliminate z9 from (E3) we subtract 1/2 times (E2) from (E3).

1 + 2z + z3 = 0 (E1)
— 2x9 + x3 = 3 (E2
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Step 3: Backward substitution. Solve first for x3, then for z, and finally for z;:

3 = 1
—2r9+1 = 3

To = —1
z1+2(-1)+1 = 0
1y = 1

Gaussian elimination: the general case

The system Az = b is represented in the augmented matrix form

aiz a2 - Qlip | by
a1 G2 -t Q2p | be
(Alb) = ¥
anl Aap2 " Gpp | by,
At the k-th iteration we have the matrix
1 1 1 1
CE
@22 ag, | b3
|
(AP [pk)y = . . .
) ol |
o ol | )

(k+1)

The k-th step consists in transforming the matrix such that a ik become zero for j = k+1,---

Suppose that
k
agck) #0.
Then transform the matrix above in the following way:
19. For j =k + 1,k +2,--- ,n: Compute the multipliers:

atk)
ik .
mjg =5 J=k+1L,k+2,---,n
alk)
kk
20 Fori=k+1,k+2,--+ ,n: Determine the new components:
(k+1) _ (k) (k)
Gy = 05" — Mg - Oy

k+1 k k
b = b — g, - b

End of 2°. End of 1°.
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When the n — 1st step is completed, we obtain a system in the upper triangular form

0y

( A(n)‘b(n)): 0 agy o Gy | ?2
: |
0o 0 - M | M

b
Ty = —
)

b%’?l - asﬁ)mmn

Tp—1 (n) ’
ann

and generally,
(n) (n)
oo O Dy 0
J o™
3j

fory=n-2,n-3,.--,1.

The diagonal elements a,(clz) are called pivot elements. If ag;c) = (0 for some k the multipliers are
not defined. A remedy for such a complication is to exchange the kth row with another row below
it, say row j for which ag.’,? # (0. This is an elementary row operation and the solution of the system
doesn’t change. The procedure of swapping rows to avoid a zero element on the diagonal is called
pivoting. There are various kinds of pivoting, we will demonstrate here the partial pivoting which
consists in the following:

If a,(jc) = 0 search the elements of the kth column below the diagonal element agz) and select the

element, say on the ith row, for which |a§llz)\ is the maximal one. Then interchange rows k£ and ¢ and
proceed with elimination.

The partial pivoting is based on the following theoretical result:

Theorem. Let A be nonsingular. If a,(jc) = 0, there is an ¢ > k for which az(:) # 0.

Example: Consider the system

$1+J}2+.’L‘3=1
1+ 29 + 223 = 2
x1 + 229 + 223 = 2

The augmented matrix is
111 |1
Ap)y=( 1 1 2 | 2
12 2 | 2
We perform the Gaussian elimination for the first column obtaining
111 |1
112 | 2
12 2 | 2

111 |1
= 001 |1
011 |1

m21:1
m31=1
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(1)

The pivot element as, = 0 hence we need to interchange the second row with the (only) row under
it which is the third row obtaining
1111
011 |1
001 |1

The third row is already in the desired form, there is no need to iterate further. The solution is
obtained by backward substitution:

.’1}3:1, .’172:0, .’171:0.

2. LU factorization

If we use the Gaussian elimination to find the solution of Az = b, we can use the information
gathered through the iterations to solve, by using just backward and forward substitutions, sys-
tems Az = b’ with the same A but a different &’. Specifically, the Gaussian elimination makes the

transformation: n) (n) (n)
n n n
all a%z T alTL
0 n
AsU-= e
. o

Theorem. If the Gaussian elimination results in the upper triangular matrix U without pivoting,
then the matrix A is equal to the product of the two matrices L and U,

A=1LU,

where the matrix L is defined in the following way:

1 0 0
mo1 1

L=
mp1 - Mpp—1 1

Based on this factorization, we can solve the system Az = b by solving two triangular systems in
the following way: solve first Ly = b to obtain y and then Uz = y to get the solution. That is,

Ur=y, Ly=b & LUzx=Ly=b <& Azr=h.

Example: Consider

2 -10 |1

12 -1]0

0 -12 |1
1) m%) =ag/an = _1/27m§;12) = ag;/a;; = 0.
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2 -1 0 2 -1 0

-1 2 -1 — | 0 3/2 -1

0 -1 2 mop = —1/2 0 -1 2
m31:0

2) miZ) = o a2 = ~2/3

2 -1 0 2 -1 0
0 3/2 -1 = |0 32 -1 |=U
0 -1 2 m) = -2/3 00 4/3

We have L in the form

1 0 0
L= -1/2 1 0
0 -2/3 1
One can check directly that
2 -1 0 1 0 0 2 -1 0
A= -1 2 -1 |=| -1/2 1 0 0 3/2 -1 = LU.
0o -1 2 0 -2/3 1 00 4/3
To solve the initial equation, we first solve
1 0 0 Y1 1
Ly=1| -1/2 1 0 2 | =b=1 0
0 —2/3 1 Y3 1

by backward substitution, obtaining
=1 1=1/2, y3=4/3.

To get the solution z of the initial equation we solve

2 -1 0 I 1 1
U= 0 3/2 -1 T =1 y | = 1/2
00 4/3 T3 Y3 4/3
to obtain
1
T = 1
1

What if we need pivoting?

We can still obtain a LU factorization, but of a transformation of the matrix A taking into
account the interchanging of rows made through pivoting. We demonstrate this on the example we
discussed before.

Example:
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1111
= 001 |1
011 | 2

mo; =1
m31 =1

We need pivoting here since a%) = (; we interchange the second row with the third row obtaining

111 |1
01 1] 2
0011

The third row is already in the desired form, hence mg? = 0. The matrix L is then in the form
100
L=1110
101

The product LU gives us

| 1 111
| 1 |=1 2 2
| 1 11 2

y interchanging the second and the third rows:

1 00 1
LU=|110 0
1 01 0

PN S = =
T = = =

The resulting matrix is the one obtained from
exactly what we did when pivoting.

We can still use the LU factorization for solving the initial equation if we do the same with b
what we did with the matrix A: interchange the second and the third column; that is, the second
and the third components. By solving Lu = b by forward substitution we obtain

1 00 Y1 1 1

110 y | =13 |=>y=1| 2

1 01 Y3 2 1
The equation Uz = y gives us by backward substitution

111 1 1 0

0 01 T3 1 1

There are several classes of matrices that never need pivoting. We will mention here only one
such class: the matrices that are strictly diagonally dominant. A matrix A with components a;; is
strictly diagonally dominant when

n
lai;| > Z laij| forall i=1,2,---,n.
=L
Such a matrix we will meet when we calculate the values of the second derivatives at the nodes of
the natural cubic splines over uniform grid:

410 - 0 0
1 41 - 0 0
01 4 - 0 0
0 0 1 4



MATH 471
SUPPLEMENT ON NUMERICAL LINEAR ALGEBRA

All the diagonal elements are equal to 4 and the sum of the other ones is 2. This means that when
we compute cubic splines we do not need pivoting. Similar matrices arises also in finite-difference
schemes for solving differential equations.

3. Error Analysis and Conditioning

e 1 | 1+e¢
(511:7°) ()
where € denotes a number much smaller than 1, say, e = 1. x 1076, This means that, rounding with
5 significant digits (any mantissa), we have ¢ = 1. x 1076, 1. + ¢ = 0.100001 x 10! =~ 0.1 x 10* =
1.,1—1/e =1—1,000,000 = —999,999 ~= —0.1 x 10° = —1/e.
Let’s apply Gaussian Elimination to the above system. The only multiplier we have to find is
mg1 = 1/e. The resulting augmented matrix is

(3 1—1/5 I T—ri/g) (x%)

The exact solution of the system (x) above is z1 = 1,29 = 1. If we take into account the roundoff
error in (**), we obtain the system

e 1 | 1

0 —1/e | =1/ )’

the solution of which is 1 = 0, z9 = 1.

In this example, the Gaussian elimination leads to an equation in which a small change, due to
roundoff error, of the components of the matrix A and the vector b, leads a significant change in the
solution. This of course is an academic example only but it illustrates that we have to be aware of
the influence of errors of the data on the solution.

Example: Consider

Intermission: Matrix Norms

Recall that a wvector norm in the space of vectors R™ is a function, the value of which at = we
denote ||z|| with the following properties:

(1) flzll > 0, ||z]| = 0 <= z =0;

(2) ||ez| = |a|||z|| for every scalar «;

() [l +yll < [zl + llyll-

Common examples of vector norms are the Euclidean 2-norm

n 1/2
lalls = (Zw?)
=1

and the so-called infinity norm
[0 = max|ai].
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For a given vector norm || - ||, one defines the associated matriz norm of a square matrix A in the
following way:
| Az]
||A]| = max .
220 ||z

From this definition we obtain the following inequality:
[ Az < [l Allf]]-

Also, another consequence of the definition is the inequality

[ABI| < [|A]l[|B]l
for any two matrices A and B. Indeed
AB All||B Al|||B
AB] — e 4B o MANIBel o BANB)
w0 ||| w0 ||| w0 ||

The matrix norm ||Al|2 which is associated with the 2-norm of vectors is

||A||2 =V |)‘max|,
where Amax is the eigenvalue of AT A with maximal absolute value:

|Amax| = max{|;| : A; is an eigenvalue of AT A}.
2

The matrix infinity norm can be computed as follows:

1<i<n

(0 ).

v [ 42
ara=(33).

The eigenvalues are the roots of the equation

n
[Allo = max Y |a].
j=1

Example: Consider

Then

A—4 =2

det(A — A) = det ( 9 \—9

):/\2—6)\+4:0.

The roots are 34+/5 and hence || A||2 = v/3 + v/5. The infinity norm is || A||oc = max{0+1,2+1} = 3.

10
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4. Condition Number

Consider the equation
Az =b>

with a nonsingular matrix A and suppose that the vector b in right hand side changes to b+ r. The
perturbation r is often called residual. As a result, we will have a new solution which we denote
T + e, where e is the error in the solution:

Alxz+e)=b+r.
From the above two equations we obtain
Ae=r = e=Alr
hence
(1) lell < 1A~ l[I].
We also know that b = Az, hence

1 _ 4]
(2) bl = l[Az| < [Allll=] = < T
]l = ol
The product of the left sides of (1) and (2) will be than less or equal to the product of the right sides,

that is,

[lell —1yqyg 1A —1ylIrll
o S NATHHr S = LAIAT -
Edl 2] 2]

The left hand side of this inequality if the relative error, and the inequality means that the relative
error is bounded by a certain number depending on the matrix A only times the relative residual.

This number is of great importance in numerical linear algebra.

Definition. The product ||A||||A™!|| is called condition number of the matrix A,
cond(4) = [lA[llA7H].

In the lines above the definition we derived the following fundamental result:
Theorem. The error of a solution z to the system Az = b is bounded by the condition number
times the relative residual:

el Il
—— < cond(A)—-.
el < A g

01
(0 ).
|Al|cc = max{1,3} = 3.

Al ( -1/2 1/2 )

1 0

Example.

Take the oo norm. We have

We have

11
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hence
A7 oo = max{1,1} =1
and then
condA,, = 3.
This means that, for example, if the relative residual is 10%, then the relative error will be not more
than 30%.
Example.
1.01 .99
A= ( 99 1.01 )
We have
[Alloo = 2.
We have
o1 (2625 2475
—24.75 25.25
hence
| A oo = 50
and then
condA, = 100.

In this case the relative residual (in the infinity norm) may be multiplied 100 times in the relative
error (in the infinity norm); e.g., for relative residual 1% the relative error could be 100%.

Another fundamental result involving the condition number is the so-called distance to singularity
formula which is due to Eckart and Young. It says the following:

Theorem.

. [1B] . 1
A+ 1 = —.
mln{ Al A + B singular cond(A4)

Example. Can a 2% perturbation in the infinity norm of the matrix

1.01 .99
A= ( 99 1.01 )
make the matrix A + B singular?

We already computed the condition number; condA,, = 100. According to the theorem above,
the distance to singularity is 1/100 = 0.01. This means that a perturbation of A of the form A + B
with
| Blloo

[[A]lo0

can make A + B singular. Hence the answer to the question is “YES”. Indeed, if we take the matrix

0 .02
B_(.02 0 )

12

.02 > 0.01
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with || Bl|ec = .02, and

|Blloc _ -02
1Zlee _ 22— 01
[Allo 2
we obtain
101 1.01
AvTB= ( 1.01 1.01 )

which is a singular matrix. Thus, even a 1% perturbation can make A singular.
Gaussian elimination and conditioning

Consider the example
e 1 | 1+e¢
(T1127) @

Applying the Gaussian elimination we use the multiplier mo; = 1/¢ and arrive at the system

((g) 1—1/5 I 1J—ri/g) (4)

The oco-norm condition number of the matrix in (3) is
cond(A4) = 4,

while the co-norm condition number of A1) in (4) is
A(AW) ~ 2
cond(AYY) =~ 2

The condition numbers may grow with the iterations and then small perturbations (round-off
errors) may lead to big errors. To avoid this, one uses pivoting even though the pivoting element is
nongzero.

For the example in (3), by exchanging the rows we obtain

11 | 2
e 1 | 1+e¢

which, with the multiplier mo; = € gives us

11 | 2
0 1—-¢ | 1—¢

The condition number of the new matrix is close to 4, not much different from the first one. This
observation is true in much more general situation: the partial pivoting stabilizes the condition
number.

Intermission: Eigenvalues
The complex number A is an eigenvalue of the square matrix A when )\ is a solution of the
equation

(+) det(AT — A) = 0.

The equation (*) is called the characteristic polynomial.

13
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The an eigenvalue is not reals, A\ = a + b, then the conjugate number A\ = a — ib is also an
eigenvalue. If A is symmetric, all its eigenvalues are real numbers. A is singular if and only if the

zero is an eigenvalue of A.
1 2
A_<34).

Examples.
1)
A—1 =2
de’c()J—A)-de‘c(_3 /\_4>—(/\—1)(/\—4)—6—0.

There are 2 real eigenvalues: A\; = (54 1/33)/2 and \; = (5 — v/33) /2.

1)
0 1
A_<_10)
det(A] — A) = det AR I C S Py
1 A
There are 2 complex eigenvalues: A1 = ¢ and Ay = —¢ that are conjugate.

5. Iterative Methods

The idea of the iterative methods for solving linear equations Az = b is the same as the fixed
point iteration: first convert the equation to a fixed-point problem

z=DBzr+c (1)
with appropriate B and ¢ and then apply the iteration procedure
D) = B 4 ¢ (2)

with a given z(®),

The main problem in such a procedure is the question of convergence; whether the sequence
0 1) @ ... M) L converges to a solution z*. Answer to this question is given by the theo-
retical results below in which one uses the concept of spectral radius.

Definition. The set of all eigenvalues of a matrix A is called spectrum and is denoted o(A). The
number

p(A) = max{|A|: A € 0(A)}

is called spectral radius of the matrix A.
Example: The matrix
0 1
A_(_lg)

has 2 complex eigenvalues: Ao = %i and p(A) = 1.
For the spectral radius of a matrix A the following inequality holds:

p(A) < ||A]| for any norm .

14
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Theorem. If p(B) < 1 then the fixed-point problem (1) has a unique solution z* and for every
initial point (®) the sequence (™ generated by the method (2) is convergence to x*.

Corollary. If there exists a norm || - || for which ||B]|| < 1, then the conclusions of the theorem
above hold.

The different iteration methods differ in how the initial equation Az = b is converted to a fixed
point problem x = Bz + c.

Richardson Iteration

The idea of the Richardson method is to convert the linear equation Az = b into the following
fixed point problem:
z=(I—-A)z+b (1)

and then apply the iteration procedure
gD = (1 — A)z®) b (2)

with a arbitrarily chosen 20, Of course, the convergence of this method will depend on the spectral
radius of the matrix (I — A).
Example: For the matrix
11
4=(0 1)
0 -1
[=4= ( 0 0.5 ) '

which has eigenvalues: A; = 0 and A2 = .5. Then p(I — A) = .5 and the Richardson iteration
converges. Let’s take b = (1 0). Then the Richardson iteration has the form

we have

(k+1) _ () 4
$§k+1) = .5x§k).

In order to improve the convergence, parameterized or relazed Richardson iteration is used. The
idea is to use the fixed point problem with a parameter,

z=(I —aA)r+ ab
which is of course equivalent to Az = b for any « # 0, and then to apply the fixed point iteration
o5 = (I — ad)z* + ab

choosing « is such a way that the spectral radius of I — oA is as small as possible.
Example: For the matrix
2 1
(2 1)

2—a —«
I—aA-(O 1—a>'

15

we have
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which has eigenvalues \; =1 — @, Ag = 2 — . The spectral radius as a fucntion of « has the form
p(e) = min{|1 —af, |2 - af}

and min, p(a) = 1/3, attained for @ = 1/3.
For b = (1 0) the relaxed Richardson iteration with o = 1/3 will be has the form

k+1 5 )y 1 &
2
S gxyx

Jacobi method
In the Jacobi method the matrix A is split into two matrices,
A=D+C,

where D is the diagonal part of A and C is the rest. That is,

all 0 0

0 a9 0
D=

0 0 Ann,

and

0 a2 a1n
O a1 O aonp

p1 ap2 -+ 0

The initial equation is transformed into a fixed point problem in the following way:
Az=b = (D+C)z=b = Dzr=-Czr+hb.
In terms of the fixed point problem (1) we have
B=-D7'C, ¢=D"".
The Jacobi method has the following iteration:
Dz**) = —Cz® 4 p,

The idea is at each iteration to solve a diagonal system; that is, n independent scalar equations. Of
course, this system has to have a unique solution, that is, det(D) # 0.
According to the general theory, the Jacobi method is convergent if

p(-D7'C) < 1.

Example. Consider
2]71 — Ty = 1
—z1+2x9 = 1

16
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with solution

The Jacobi iteration has the form

250 = 2 11
ngkﬂ) = a:gk) + 1.
Starting from
_ (0
0
we have
22" = &) 41
208V = 2V +1

which results in

The second and the third iterations give us

#-(8) - (38)

Will the sequence converge? To answer this question we find the spectral radius of the matrix —D~!C

with
2 0 0 -1
D_(OQ) and C_(—10 )

o= U ) (%ot )= (0 )

The characteristic polynomial of the latter matrix is

1
M- = =0.
4
The matrix —D 'C has 2 eigenvalues, both equal to 1/2. The spectral radius is < 1, hence we have

convergence.

that is,

Gauss-Seidel method

The Gauss-Seidel method uses the splitting of the matrix A into two matrices,
A=G+ S,

where G is the lower triangular part of A including the main diagonal and S is the rest:

a1 O .- 0

asy az --- 0
G =

anl Gp2 **° Qpp

17
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and
0 app --- aip
0 - ay,
S =
00 --- 0

The transformation into a fixed point problem is carried out in the following way:
Az=b = (G+S)z=b = Gz=-Sz+b.
In terms of the fixed point problem (1) we have
B=-G7'S, ¢=G b
The Gauss-Seidel iteration is of the form
G+ = —5z(®) 4 p,

The idea is at each iteration to solve a system of equations whose matrix is in a lower triangular
form, that is, by forward substitution. The Gauss-Seidel iteration is convergent if

p(—G718) < 1.

Theorem. If A is a positive definite matrix, then p(—G~1S) < 1, and hence the GS method
converges.
Example. Consider the same example as for the Jacobi method

201 — 19 = 1
—x1 +2x9 = 1.
The Gauss-Seidel iteration has the form
2050 — 2P 11
_gFH) gt
Starting from
- (3)
we have
22 = 2 41
—:vgl) + 2x§1) =1

which gives us

o-(32)

The point obtained from the second and the third iterations are

=% = ( %316 ) =% = ( 2:{,;2421 ) '

18
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From the form of the matrices G and S,

2 0 0 -1
6=(2,5) mas=(g ;")

we obtain that the spectral radius of —G~1S is 1/4 < 1. Thus we have convergence.
In general, the smaller the spectral radius, the faster the convergence.

19



