Name: \qquad

Math 275 - Analytic Geometry and Calculus III

Matlab Project Sample Problems

- (Section 13.1 \# 30) Use Matlab to graph the curve given by the vector equation

$$
\mathbf{r}(t)=\left\langle t^{2}, \ln t, t\right\rangle
$$

Make sure you choose a parameter domain and viewpoints that reveal the true nature of the curve. Note: command plot3 may be useful in plotting 3D curves.

Section 13.1 \# 30: graph of curve $x=t^{2}, y=\log (t), z=t$

Figure 1: Section 13.1 \# 30

- (Section 13.1 \# 33) Graph the curve with parametric equations

$$
x=(1+\cos 16 t) \cos t, \quad y=(1+\cos 16 t) \sin t, \quad z=1+\cos 16 t
$$

Explain the appearance of the graph by showing that it lies on a cone.

Figure 2: Section 13.1 \# 33

- (Section 13.1 \# 40) Try to sketch by hand the curve of intersection of the parabolic cylinder $y=x^{2}$ and the top half of the ellipsoid $x^{2}+4 y^{2}+4 z^{2}=16$. Then find parametric equations for this curve and use these equations and Matlab to graph the curve.

Figure 3: Section 13.1 \# 40

- (Section 13.2 \# 27) Find parametric equations for the tangent line to the curve with the parametric equations

$$
x=t, \quad y=\mathrm{e}^{-t}, \quad z=2 t-t^{2}
$$

at the point $(0,1,0)$. Illustrate by graphing both the curve and the tangent line on a common screen.

Section 14.2: \# 27: curve and its tangent line

Figure 4: Section 13.2 \# 27

- (Section 13.3 \# 35) Use Matlab to graph both the curve

$$
y=x^{-2}
$$

and its curvature function $\kappa(x)$ on the same screen. Is the graph of κ what you would expect?

Figure 5: Section 13.3 \# 35

- (Section 14.1 \# 51, \# 52) Use Matlab to graph the function using different domains and viewpoints. Get a printout of one that, in your opinion, gives a good view. Plot also some contour curves of the same function and compare with the graph.
(a)

$$
f(x, y)=\mathrm{e}^{-x^{2}}+\mathrm{e}^{-2 y^{2}}
$$

(b) $\quad f(x, y)=\left(1-3 x^{2}+y^{2}\right) \mathrm{e}^{1-x^{2}-y^{2}}$

Note: commands meshgrid, mesh, surf, contour may be useful in plotting surfaces and contour curves.

Figure 6: Section 14.1 \# 51 and \# 52

- (Section 14.1 \# 70) Use Matlab to graph the function

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

using using different domains and viewpoints. Comment of limiting behavior of the function. What happens when both x and y become large? What happens when (x, y) approaches the origin?

Figure 7: Section 14.1 \# 70

- (Section 14.4 \# 8) Graph the surface

$$
z=\arctan \left(x y^{2}\right)
$$

and the tangent plane at the point $(1,1, \pi / 4)$. (Choose the domain and viewpoint so that you get a good view of both the surface and the tangent plane.) Then zoom in until the surface and the tangent plane become indistinguishable.

Figure 8: Section 14.4 \# 8

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Math 275: This is program
% matlab_problems_examples.m to for Matlab project
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Section 13.1 # 30
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t=0.1:1e-3:5;
x=t.^2; y=log(t); z=t;
figure(1); clf(1)
set(gca,'FontSize',12); set(gca,'box','on')
plot3(x,y,z)
xlabel('x')
ylabel('y')
zlabel('z')
title('Section 13.1 # 30: graph of curve x=t^2, y=log(t), z=t')
grid on
print -depsc2 problem_13_1_30.eps
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Section 13.1 # 33
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t=-10:1e-3:10;
figure(2); clf(2)
set(gca,'FontSize',12); set(gca,'box','on')
x=(1+\operatorname{cos}(16*t)).*\operatorname{cos}(t);
y=(1+\operatorname{cos}(16*t)).*\operatorname{sin}(t);
z=(1+\operatorname{cos}(16*t));
subplot(2,2,1)
plot3(x,y,z,'Linewidth',1)
xlabel('x')
```

```
ylabel('y')
zlabel('z')
title('Section 13.1 # 33: curve')
grid on
t=-10:1e-1:10;
subplot(2,2,2)
x=t; y=t;
[X,Y]=meshgrid(x,y);
f=inline('sqrt(x.`2+y.^2)','x','y');
mesh(X,Y,f(X,Y))
%xlim([-2 2])
%ylim([-2 2])
%zlim([0 2])
title('Cone z=sqrt(x^2+y^2)')
print -depsc2 problem_13_1_33.eps
```

\%
\% Section 13.1 \# 40
\%

```
figure(3); clf(3)
set(gca,'FontSize',12); set(gca,'box','on')
subplot(2,2,1)
x=-2:1e-2:2;
z=0:1e-2:3;
f=inline('x.^2','x','z');
[X3,Z3]=meshgrid(x,z);
mesh(X3,f(X3,Z3),Z3)
hold on
subplot(2,2,2)
mesh(X3,f(X3,Z3),Z3)
hold on
subplot(2,2,1)
x=-2:1e-2:2;
y=-sqrt(2):1e-2:sqrt(2);
f=inline('sqrt(4-x.`2/4-y.^2)','x','y');
[X2,Y2]=meshgrid(x,y);
mesh(X2,Y2,f(X2,Y2))
```

```
xlabel('x')
ylabel('y')
zlabel('z')
title('Section 13.1: # 40')
x=-1:1e-2:1;
y=x.^2;
z=sqrt(4-x.`4-x.`2/4);
plot3(x,y,z,'rd','Linewidth',5)
subplot(2,2,2)
plot3(x,y,z,'r','Linewidth',4)
print -depsc2 problem_13_1_40.eps
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Section 13.2 # 27
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

```
figure(4); clf(4)
```

figure(4); clf(4)
set(gca,'FontSize', 12); set(gca,'box','on')
set(gca,'FontSize', 12); set(gca,'box','on')
t=-3:1e-2:3;
t=-3:1e-2:3;
x1=t; y1=exp(-t); z1=2*t-t.^2;
x1=t; y1=exp(-t); z1=2*t-t.^2;
x2=t; y2=1-t; z2=2*t;
x2=t; y2=1-t; z2=2*t;
plot3(x1,y1,z1,'b','Linewidth', 2)
plot3(x1,y1,z1,'b','Linewidth', 2)
hold on
hold on
plot3(x2,y2,z2,'r','Linewidth',2)
plot3(x2,y2,z2,'r','Linewidth',2)
grid on
grid on
legend('curve','tangent line')
legend('curve','tangent line')
title('Section 13.2: \# 27: curve and its tangent line')
title('Section 13.2: \# 27: curve and its tangent line')
print -depsc2 problem_13_2_27.eps
print -depsc2 problem_13_2_27.eps
%%
%%
% Section 13.3 \# 35
% Section 13.3 \# 35
%%%

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

```
figure(5); clf(5)
set(gca,'FontSize',12); set(gca,'box','on')
```

```
x=-5:1e-2:5;
y=x.^ (-2);
kappa=6*x.^(-4)./((1+4*x.^(-6)).^(3/2));
plot(x,y,'b','Linewidth',2)
hold on
plot(x,kappa,'r','Linewidth', 2)
ylim([0 3])
legend('y(x)','\kappa(x)')
title('Section 13.3: # 35')
print -depsc2 problem_13_3_35.eps
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Section 14.1 # 51, 52
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

```
figure(6); clf(6)
```

figure(6); clf(6)
set(gca,'FontSize',12); set(gca,'box','on')
set(gca,'FontSize',12); set(gca,'box','on')
x=-2:1e-2:2;
x=-2:1e-2:2;
y=x;
y=x;
[X,Y]=meshgrid(x,y);
[X,Y]=meshgrid(x,y);
f=inline(' exp (-x.`2) +exp(-2*y.`2)', 'x', 'y');
f=inline(' exp (-x.`2) +exp(-2*y.`2)', 'x', 'y');
g=inline('(1-3*x.^2+y.^2).*exp(1-x.^2-y.^2)','x','y');
g=inline('(1-3*x.^2+y.^2).*exp(1-x.^2-y.^2)','x','y');
subplot(2,2,1)
mesh(X,Y,f(X,Y))
xlabel('x')
ylabel('y')
zlabel('z')
title('Section 14.1 \# 51: surface plot')
subplot(2,2,2)
contour(X,Y,f(X,Y))
xlabel('x')
ylabel('y')
zlabel('z')
title('Section 14.1 \# 51: contour plot')
subplot(2,2,3)
mesh(X,Y,g(X,Y))
xlabel('x')
ylabel('y')
zlabel('z')

```
```

title('Section 14.1 \# 52: surface plot')
subplot(2,2,4)
contour(X,Y,g(X,Y))
xlabel('x')
ylabel('y')
zlabel('z')
title('Section 14.1 \# 52: contour plot')
print -depsc2 problem_14_1_51_52.eps
%%%
% Section 15.1 \# 70
%%%
figure(7); clf(7)
set(gca,'FontSize', 12); set(gca,'box','on')
x=-1:1e-2:1;
y=x;
[X,Y]=meshgrid(x,y);
f=inline('(x.*y)./(x. `2+y. `2)', 'x', 'y');
subplot(2,2,1)
mesh(X,Y,f(X,Y))
xlabel('x')
ylabel('y')
zlabel('z')
title('Section 14.1: \# 70: close to the origin')
subplot(2,2,2)
x=-50:1e-1:50;
y=x;
[X,Y]=meshgrid(x,y);
mesh(X,Y,f(X,Y))
xlabel('x')
ylabel('y')
zlabel('z')
title('Section 14.1: \# 70: away from the origin')
print -depsc2 problem_14_1_70.eps
%%
% Section 14.4 \# 8
%%%

```
```

figure(8); clf(8)
set(gca,'FontSize',12); set(gca,'box','on')
x=-1:1e-2:1;
y=x;
[X,Y]=meshgrid(x,y);
f=inline('atan(x.*y.^2)','x','y'); % surface
subplot (2,2,1)
mesh(X,Y,f(X,Y))
hold on
g=inline('pi/4+(x-1)/2+y-1','x','y'); % tangent plane
mesh(X,Y,g(X,Y))
xlabel('x')
ylabel('y')
zlabel('z')
title('Section 14.4: \# 8')
x2=0.9:1e-3:1.1;
y2=x2;
[X2,Y2]=meshgrid(x2,y2);
subplot(2,2,2)
mesh(X2,Y2,f(X2,Y2))
hold on
mesh(X2,Y2,g(X2,Y2))
xlabel('x')
ylabel('y')
zlabel('z')
title('Section 14.4: \# 8: zoom in')
xlim([0.9 1.1])
ylim([0.9 1.1])
print -depsc2 problem_14_4_8.eps

```
```

