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When the beam is of uniform thickness, the product EI is constant,
and the exact solution is easily obtained. In many applications, however,
the thickness is not uniform, so the moment of inertia [ is a function of
x, and approximation techniques are required. Problems of this type are

considered in Exercises 7 of Section 11.3 and 6 of Section 11.4.

Methods for finding approximate solutions to differential equations, studied in Chapter
3, require that all conditions imposed on the differential equation occur at an initial point.
For a second-order equation, we need to know both w(0) and w'(0), which is not the case
in this problem. New techniques are required for handling problems when the conditions
imposed are of a boundary-value rather than an initial-value type.

Physical problems that are position-dependent rather than time-dependent are often
described in terms of differential equations with conditions imposed at more than one point.
The two-point boundary-value problems in this chapter involve a second-order differential
equation of the form

(11L.1) yr=flryy), a=x=bh
together with the boundary conditions

(11.2) yi@) =« and y(b) =B

11.1 The Linear Shooting Method

Theorem 11.1

The following theorem gives general conditions that ensure that the solution to a second-
order boundary value problem exists and 1s unique. The proof of this theorem can be found
in [K,H].

Suppose the function f in the boundary-value problem
YWEFEYY) a=x=h ya=a yB=8
is continuous on the set

D={xyy)la=x

1A

b, —oo <y <o —®< }.‘" < OC}

and that df/dy and 4f/dy’ are also continuous on D. If

)
(i) ((?—f(x, v, v = 0forall (x, ¥, y) € D, and
}J'
(i) A constant M exists, with
»
;'—}:(x, y,y) =M, forall(xyy") €D,
Ay

then the boundary-value problem has a unique solution. ]
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EXAMPLE 1

Corollary 11.2

CHAPTER 11 = Boundary-Value Problems for Ordinary Differential Equations

The boundary-value problem

YW+e ™ +siny' =0, 1=sx=2 y)=y2) =0

has
floy,y)=—e™ —siny’.
Since
: : —xy af ) ,
a—y(x._v.y) =xe ¥ >0 and ‘@(x,y,y) =|-cosy'| =1,
this problem has a unique solution. =

When f(x, y, y') has the form
fx 3, %) = p)y' + qlx)y + r(x),
the differential equation
y'=fxyy")

is linear. Problems of this type frequently occur, and in this situation Theorem 11.1 can be
simplified.

If the linear boundary-value problem
Y'=p)y +qxy+r@x), a=x=<b ya=a yb)=8
satisfies

(i) p(x), g(x), and r(x) are continuous on [a, b],
(i) ¢(x) = Oon[a, b],

then the problem has a unique solution. [ ]

To approximate the unique solution guaranteed by the satisfaction of the hypotheses
of Corollary 11.2, let us first consider the initial-value problems

13) Y =pa)y +qx)y+rx), asx=b y@=a y@=0
and
(11.4) Y =px)y' +qx)y, as=xsb ¥a)=0 y@=1

Theorem 5.16 in Section 5.9 ensures that under the hypotheses in Corollary 11.2, both '
problems have a unique solution. If y;(x) denotes the solution to (11.3) and y,(x) denotes




gure 11.1

ALGORITHM

111

11.1  The Linear Shooting Method 5 627

the solution to (11.4), it is not difficult to verify that

-

(11.3) y(x) = yi(x) + B—'Z—]u}fz(_-‘c)

»(b)
is the unique solution to our boundary-value problem, provided, of course that y,(b) # 0.
(That y»(h) = 0is in conflict with the hypotheses of Corollary 11.2 is considered in Exercise
8.)

The Shooting method for linear equations is based on the replacement of the linear
boundary-value problem by the two initial-value problems (11.3) and (11.4). Numerous
methods are available from Chapter 5 for approximating the solutions y;(x) and ya(x),
and once these approximations are available, the solution to the boundary-value problem
is approximated using Eq. (11.5). Graphically, the method has the appearance shown in
Figure 11.1.

Yoh
ol ¥a(x)
¥ =y (x) + : :(}b])(—b) yalx)
-t
7 b X

Algorithm 11.1 uses the fourth-order Runge-Kutta technique to find the approximations
to y;(x) and y,(x), but any other technique for approximating the solutions to initial-value
problems can be substituted into Step 4.

The algorithm has the additional feature of obtaining approximations for the derivative
of the solution to the boundary-value problem as well as to the solution of the problem
itself. The use of the algorithm is not restricted to those problems for which the hypotheses
of Corollary 11.2 can be verified; it gives satisfactory results for many problems that do not
satisty these hypotheses.

Linear Shooting
To approximate the solution of the boundary-value problem
"+ px)y' +gx)y+r(x) =0, a=x=b y@=a yb)=p:

(Note: Equations (11.3) and (11.4) are written as first-order systems and solved.)
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Ty ry

i
INPUT  endpoints a, b; boundary conditions «, 3 number of subintervals N.
OUTPUT approximations w; to y(x;); wp,; to y'(x;) foreachi =0, 1,..., N.

Step 1 Seth = (b — a)/N;

Mg = o
trg = 0;
vio = 0;
Voo = 1

Step 2 Fori=0,...,N — 1doSteps 3 and 4.
(The Runge-Kutta method for systems is used in Steps 3 and 4.)

Step 3 Setx = a+ ih.
Step 4 Setky | = hiy:

kio = h [pua; + q(uy; + r(x)];

kyy = h[up; + 3kyal:

kor = h [p(x + h/2) (u2; + 3k12)

+q(x + 1/2) (ur; + Lk o) + r(x + 1/2);
kyi = huz; + kol
kso = h [p(x + 1/2) (2 + 1ko2)
+q(x + h/2); + Yhoy) + r(x + 1/2)];

kay = h[upi + ks2):

kao = h [p(x + h)uy; + ks2) + q(x + W)y + ksy) + rx + )]s

nper =t + L[y + 2Ky + 2ksy + ke

Upipt = i+ § [kia + 2kpa + 2kan + kapl

ki) = hvais

k> =R [p)va; + gx)vis);

ki = ["2* + 3k, )5
Ky, = h[pGx + h/2) (o + 3ki,) + qx + h/2) (vi; + 3k14)]s
K, = h[vai + 3k,

h
h

1

Ky = h[px+ 1/2) (vai + 3K55) + g+ 1/2) (vis + 3k3,)];
by =
45 = h[plx + By + k) + glx + B)(vy; + kil
Viier = vii + g [kl 2kE, 2K+ kT
a1 = Vo + L[k, + 2kh, + 2k, + ki)

Step 5 Setw gy = «;

_B-wun,

H’QI{} — s
VI

OUTPUT (a, wy g, Wap)-
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Step 6 Fori=1,...,N
set W1 = uy; + waoveis
w2 = uz; + W2 oV2is
x=a+tih
OUTPUT (x, W1, W2). (Output is x;, wy;, wa,i.)

Step 7 STOP. (Process is complete.)

The boundary-value problem

2 sin(In x)
X 27 x2

» 1=x=2, y1)=1 y2)=2

has the exact solution

{54 3 s 1
y=cx+ 210 sin(ln x) 10 cos(In x),
where
= 7—10[8 — 12sin(In2) — 4 cos(In2)] = —0.03920701320
and

o= % — ¢ =~ 1.1392070132.

Applying Algorithm 11.1 to this problem requires approximating the solutions to the initial-
value problems

2 sin(ln x)

2
y;" = ——y{ — == + = l=x=2 y(Q)=1, }‘{(1) =0,
X X X

and

2B
v = *;)’5 ton 1=sx=2 ynl)= 0, y)=1

The results of the calculations, using Algorithm 11.1 with N = 10 and A = 0.1, are given
in Table 11.1. The value listed as u; ; approximates y;(x;), v;; approximates y,(x;), and w;
approximates

2—y(2
yxi) = yi(x) + ng;_))'z(xi)- e

The accuracy found in Table 11.1 is cxpectéd because the fourth-order Runge-Kutta
method gives O(h*) accuracy to the solutions of the initial-value problems. Unfortunately,
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Table 11.1
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X Uy Vii W y(x:) [y(x) — wil
1.0 1.00000000 0.00000000 1.00000000  1.00000000

1.00896058 0.09117986  1.09262917  1.09262930 1.43 % 1077
1.2 1.03245472 0.16851175 1.18708471 118708484 1.34 % 1077
13 1.06674375 0.23608704 1.28338227 1.28338236 9.78 x 107%
1.4 1.10928795 0.29659067 1.38144589 1.38144595 6.02 x 1078
1.5 1.15830000 0.35184379 1.48115939 1.48115942 3.06 X 1078
1.6 1.21248372 0.40311695 1.58239245 1.58239246 1.08 x 1078
1.7 1.27087454 0.45131840 1.685013%96 1.68501396 5.43 x 10710
1.8 1.33273851 0.49711137 1.78889854 1. 78889853 5.05 % 107°
1.9 1.397506138 0.54098928 1.89392951 1.89392951 4.41 x 107°
2.0 1.46472815 0.58332538 2.00000000 2.00000000

because of roundoff errors, there can be problems hidden in this technique. If y;(x) rapidly
increases as x goes from a to b, then u;y = y(b) will be large. Should 3 be small
in magnitude compared to u; y, the term wyg = (B — wyx)/viy Will be approximately
—uy y/vin- The computations in Step 6 then become

Uy

W1 = uy; +waovy; = uy; — (—) Viis
VI.N
Uy N

W2 = up; + wogva; =ty — (1,- ) V2 i
LN

which allows a possibility of a loss of significant digits due to cancellation. However, since
uy; is an approximation to y;(x;), the behavior of y; can easily be monitored, and if uy;
increases rapidly from a to b, the shooting technique can be employed backward, that is,
solving instead the initial-value problems

y'=p@y +q@)y +r(x), asx=b yb)=p y® =0,
and
y'=pey +qx)y, as=x=b yb)=0 y® =1

If this reverse shooting technique still gives cancellation of significant digits and if
increased precision does not yield greater accuracy, other techniques must be used, such
as those presented later in this chapter. In general, however, if u;; and v,; are O(h")
approximations to y;(x;) and y2(x;), respectively, foreachi = 0,1,..., N, then w; will be
an O(h") approximation to y(x;). In particular,

Vi

Iwi: — y(a)l = K™ 1+

'

Vin

for some constant K (see [IK, p. 426]).




