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6. Write the second-order initial-value problems (11.3) and (11.4) as first-order systems. and
derive the equations necessary to solve the systems using the fourth-order Runge-Kutta method
for systems.

7. Let u represent the electrostatic potential between two concentric metal spheres of radii R, and
Ry, with Ry << R,, such that the potential of the inner sphere is kept constant at V, volts and
the potential of the outer sphere is () volts. The potential in the region between the two spheres
is governed by Laplace’s equation, which, in this particular application, reduces to

2 2
d—'l;‘ + —ﬁ = 0, R1 =r= R:. HIRIJ = V]. !l'{R:} = (.
dr* rdr
Suppose Ry = 2in.. R, = 4in..and V; = 110 volts.
a.  Approximate u(3) using the Linear Shooting Algorithm.

b.  Compare the results of part (a) with the actual potential u(3), where

V|R| R2 - F
"= _l"u Ry — R, ’

8.  Show that if y; is the solution to ¥ = p(x)y' + g(x)y and y»(a) = y»(b) = 0, then y, = 0.
9. Consider the boundary-value problem

¥y'+y=0 0=x=<b y0)=0 y(b) =B

Find choices for b and B so that the boundary-value problem has
a.  No solution;
b.  Exactly one solution;
c. Infinitely many solutions.
10. Attempt to apply Exercise 9 to the boundary-value problem

yi=y=0, 0=x=b y0)=0 b =B

What happens? How do both problems relate to Corollary 11.2?

11.2 The Shooting Method for Nonlinear Problems
The shooting technique for the nonlinear second-order boundary-value problem
(11.6) y'=fxyy) a=x=b ya=a yb =58
is similar to the linear case, except that the solution to a nonlinear problem cannot be
expressed as a linear combination of the solutions to two initial-value problems. Instead,
we need to use the solutions to a sequence of initial-value problems of the form

(11.7) y'=fxyy) a=x=b ya=a Y@=t

involving a parameter 1, to approximate the solution to the boundary-value problem. We
this by choosing the parameters t = 1, so that

lim y(b, &) = y(b) = B,
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where y(x, #;) denotes the solution to the initial-value problem (11.7) with t = # and y(x)
denotes the solution to the boundary-value problem (11.6).
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This technique is called a “shooting” method, by analogy to the procedure of firing
objects at a stationary target. (See Figure 11.2.) We start with a parameter 1, that determines
the initial elevation at which the object is fired from the point (a, a) and along the curve
described by the solution to the initial-value problem:
Y= fxyy) a=x=b ya=a y=n
If y(b, 1) is not sufficiently close to 3, we correct our approximation by choosing
elevations 1, 1, and so on, until y(b, #) is sufficiently close to “hitting” B. (See Figure
11:3.)
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To determine the parameters #;, suppose a boundary-value problem of the form (11.6)
satisfies the hypotheses of Theorem 11.1. If y(x, 1) denotes the solution to the initial-value
problem (11.7), the problem is to determine 7 so that

(11.8) y(b,t)— B = 0.

This is a nonlinear equation of the type considered in Chapter 2, so a number of methods
are available.

To use the Secant method to solve the problem, we need to choose initial approximations
fo and 1, and then generate the remaining terms of the sequence by

_ O te-1) = BYti—1 — tx-2)
y(b, t—1) — y(b, t-2)

fy = tr—1 s =2

To use the more powerful Newton’s method to generate the sequence {;}, only one
initial approximation, #g, is needed. However, the iteration has the form

b ty-1) — B

(11.9) Iy = fi—) dy(b - 5
RN

and requires the knowledge of (dy/dr)(b, t;—). This presents a difficulty since an ex-
plicit representation for y(b, ) is not known; we know only the values y(b, 1), v(b, 1)),

e MBI
Suppose we rewrite the initial-value problem (11.7), emphasizing that the solution
depends on both x and ¢ as

(11.10) Y1) = fxy(x ), y'( 1), a=x=b yan=o yat=t

We have retained the prime notation to indicate differentiation with respect to x. Since we
need to determine (dy/dt)(b, 1) when t = 1;;, we first take the partial derivative of (11.10)
with respect to 7. This implies that

ay" _df ; !
g(x, 1) = E(x, yix ), y'(x 1)

J ax a Iy
- %(x. y(x, 1), ¥'(x, r))a—f & %(x, yx 1), y'(x, r)):—i(x, 1)

EE -g%(x, yx 1), y'(x, r))%(x, £).

Since x and ¢ are independent, dx/d¢ = 0 and

ay”" RN y dy B y ay’
(11.11) a—r(x, 1) 8—}__(x.}(x, 0,y (x,f})g(x, 1+ gy(x,}(x, 1), y(x r))—a?{x, t)

for a = x = b. The initial conditions give

Ay ay'
e = d — i — o
= (a, 1) =0 an o (a,t) =1
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If we simplify the notation by using z(x, ) to denote (dy/dt)(x, f) and assume that
the order of differentiation of x and ¢ can be reversed, (11.11) with the initial conditions
becomes the initial-value problem

8
') = "a{;(x, ¥ yDz(x, 1) + ;,%(x, vyt a=x=b zan =0 Z'at) =1

(11.12)

Newton’s method therefore requires that two initial-value problems be solved for each
iteration, (11.10) and (11.12). Then from Eq. (11.9),

G B‘

11.13 = t—
( ) &= =1 05

Of course, none of these initial-value problems is solved exactly; the solutions are
approximated by one of the methods discussed in Chapter 5. Algorithm 11.2 uses the
fourth-order Runge-Kutta method to approximate both solutions required by Newton’s
method. A similar procedure for the Secant method is considered in Exercise 4.

Nonlinear Shooting

To approximate the solution of the nonlinear boundary-value problem

Y'=fxyy) a=x=b y@=a yb)=B:

(Note: Equations (11.10) and (11.12) are written as first-order systems and solved.)

INPUT endpoints a, b; boundary conditions e, 8; number of subintervals N = 2; tolerance
TOL; maximum number of iterations M.

OUTPUT  approximations wy ; to y(x;); wa; to ¥'(x;) foreachi = 0, 1,. . ., N or a message
that the maximum number of iterations was exceeded.

Step 1 Seth = (b —a)/N;
k=1
TK = (B — a)/(b—a). (Note: TK could also be input.)

Step 2 While (k = M) do Steps 3-10.

Step 3 Setw,y = «a;
wyg = TK;
up = 0
Uy = 1.

Step 4 Fori=1,..., N do Steps 5 and 6.
(The Runge-Kutta method for systems is used in Steps 5 and 6.)

Step5 Setx=a+(i— Dh
Step G- Set kl.l — hWQ_;'_.l;

kip =hf(xwiiwyiq);
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ka1 = h(wyioy + 3ki2);
koo = hf (x + h/2,wi iy + 3ky1, woi + Ska);
ks = h(waicy + 3k22);
ka2 = hf (x +h/2wiiy + Jkog, woi + Skan);
kg1 = h(wyi-1 + ka2);
kap = hf(x + hwyiy + ks, woio) + k32); _
Wi = wien + (Rt 2k + 2k F ke))/6;
woi = wai-1 + (ki + 2k + 2k30 + ky2) /6
ki = huo;
kiy = LA wiimt, woim ) uy
+ (6 wyion, w1l
k31 = k[ + 3K{,];
kyo =h[fix + h/2, wiimt, woimy) () + 3k )
+fy(x + RS2, wimg, woio1) (2 + 3k1,)]5
k= h(m+ 3K);
kin =h[fy(x+h/2,wiizy, wyic) (m + k5 1)
i+ h/2 wiim, wyi-1) (02 + 1K) ]
KL, = Ry + kL):
ki, =nh [fy(x + howyiowaio) () + kil)
+ fyr(x + b wii, woio1) (w2 + K5,) ]
wy = wy + gLk +2k5, + k3 + ki l:
uy = uy + Llk{, + 2k, + 2k}, + k).
Step 7 If |wy y — Bl = TOL then do Steps 8 and 9.

Step 8 Fori=01,....N
setx = a + ih;
OUTPUT (_JC, Wi, sz)‘

Step 9 (Procedure is complete.)
STOP.

(M) s (Newton’s method is used ro compute TK.)
i

Step 10 SetTK = TK —
k=k+ 1

Step 171 OUTPUT (‘Maximum number of iterations exceeded’);

(Procedure completed unsuccessfully.)
STOP.

In Step 7, the best approximation to B we can expect for wy y(#) is O(h"), if the
approximation method selected for Step 6 gives O(h") rate of convergence.
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The value 7y = TK selected in Step 1 is the slope of the straight line through (a, «) and
(b, B). If the problem satisfies the hypotheses of Theorem 11.1, any choice of 15 will give
convergence; but given a good choice of 1y, the convergence will improve and the procedure
will work for many problems that do not satisfy these hypotheses.

EXAMPLE 1 Consider the boundary-value problem
= 1 3 . F = — — 4_3
YI=20@2+28 —yy) 1=x=3 yD=17 y® ==

which has the exact solution y(x) = x*> + 16/x.
Applying the Shooting method given in Algorithm 11.2 to this problem requires
approximating solutions to the initial-value problems

y'= %(32 +223 -y, 1=x=3 y)=17, YY) =1,

and

-7":.{?.‘{74-%

L.
Sl dL‘_,z"=—§()'z+)*4’.’). 1=x=3 z21)=0 zZD=]1,

at each step in the iteration.

Table 11.2
X Wi ¥(x:) |“‘l.:‘ . .\'(If)|
1.0 17.000000 17.000000
1.1 15.755495 15.755455 4.06 X 1073

1.2 14773389 14.773333 5.60 X 1073
1.3 13.997752 13.997692 594 x 1077
1.4 13.388629 13.388571 5.71 X 10773
1.5 12916719 12916667 523x10°°
1.6 12.560046 12.560000 4.64 X105
17 12.301805 12.301765 4.02 X 1073
1.8 12.128923 12.128889 3.14x107°
1.9 12.031081 12.031053 2.84 X 1073
2.0 12.000023 12.000000 2.32x 1073

2.1 12.029066 12.029048 1.84 X 1077
22 12.112741 12.112727 1.40 X 1073
23 12.246532 12.246522 1.01 x10°°
24 12.426673 12.426667 6.68 X 107°
2.5 12.650004 12.650000 3.61 X107
2.6 12.913847 12.913846 9.17 X 1077
2.9 13.215924 13.215926 1.43 X 107°
2.8 13.554282 13.554286 3.46 X 107°
29 13.927236 13.927241 521 X107

3.0 14.333327 14.333333 6.69 X 10°°
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If the stopping technique
lwi @) — y3) = 1073

is used, this problem requires four iterations and 4 = —14.000203. The results obtained
for this value of # are shown in Table 11.2. [}

Although Newton’s method used with the shooting technique requires the solution of
an additional initial-value problem, it will generally be faster than the Secant method. Both
methods are only locally convergent, since they require good initial approximations. For a
general discussion of the convergence of the shooting techniques for nonlinear problems,
the reader is referred to the excellent book by Keller [ K,H]. In that reference, more general
boundary conditions are discussed. It is also noted that the shooting technique for nonlinear
problems is sensitive to round-off errors, especially if the solution v(x) and z(x, r) are rapidly
increasing functions on [a, b].
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EXERCISE SET 11.2

[

Use the Nonlinear Shooting Algorithm with i = 0.5 to approximate the solution to the boundary-
value problem

Y= =Y —y+Inx for 1=x=2 where y(1)=0 and y(2)=In2.

Compare your results to the actual solution y(x) = In x.
2. Use the Nonlinear Shooting Algorithm with & = (.25 to approximate the solution to the
boundary-value problem
|
4

th| —

y' =2y} for 1=x=2 where y(l)= and y(2) =

Compare your results to the actual solution y(x)} = 1/(x + 3).

3. Use the Nonlinear Shooting method with TOL = 107 to approximate the solution to the
following boundary-value problems. The actual solution is given for comparison to your results.

1
a y'=y-y! 1=x=2 y)= = ¥(2) = g; use o = 0.1 and compare the results

toy(x) = (x+1) "

3 5
b. y'=2y"—6y—2x" 1=x=2 yl)=2 y2) = 33 use h = 0.1 and compare the
results to y(x) = x +x !,
|
e ¥V=y+22y-P-x, 1=x=2yD)=1, y2) = 5 +1n2; useh = 0.1 and

compare the results to y(x) = x~!' + Inx.
d. ¥ = [0 -9+ 428/ 1 =x=2 y(1) =0, ¥2) = In256; use h = 0.05
and compare the results o v(x) = x* Inx.
4. Change Algorithm 11.2 to incorporate the Secant method instead of Newton’s method. Use
o= (B—a)/(b—ayand 1ty = 1y + (B — y(b iy))/(b — a).
5. Repeat Exercise 3(a) and 3(c) using the Secant algorithm derived in Exercise 4, and compare
the number of iterations required for the two methods.




