Splines

Let $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. A <u>spline of degree m</u> is a function S(x) which satisfies the following conditions:

- 1. For $x \in [x_i, x_{i+1}], S(x) = S_i(x)$: polynomial of degree $\leq m$
- 2. $S^{(m-1)}$ exists and continuous at the interior points x_1, \ldots, x_{n-1} , i.e. $\lim_{x \to x_i^-} S_{i-1}^{(m-1)}(x) = \lim_{x \to x_i^+} S_i^{(m-1)}(x)$

EXAMPLE

$$S(x) = \begin{cases} 0, & -1 \le x \le 0 \\ x^2, & 0 \le x \le 1 \end{cases}$$

$$x_0 = -1, \ x_1 = 0, \ x_2 = 1$$

S(x) is a spline of degree m=2 (quadratic spline).

EXAMPLE

$$S(x) = \begin{cases} 0, & -1 \le x \le 0\\ 1 - (x - 1)^2, & 0 \le x \le 1 \end{cases}$$

S(x) is not a quadratic spline because $\lim_{x\to 0^-} S'(x) \neq \lim_{x\to 0^+} S'(x)$.

Cubic Spline Interpolation

Given f, x_0, \ldots, x_n as above, find a cubic spline S such that $S(x_i) = f(x_i)$, $i = 0, \ldots, n$.

n+1 points $\Rightarrow n$ intervals $\Rightarrow 4n$ coefficients

2n conditions needed to interpolate $f(x_0), \ldots, f(x_n)$

2(n-1) conditions needed to ensure S', S'' are continuous at the interior points

This leaves 2 free conditions. Popular choices are:

- (i) $S''(x_0) = S''(x_n) = 0$: the <u>natural cubic spline interpolant</u>
- (ii) $S'(x_0) = f'(x_0)$, $S'(x_n) = f'(x_n)$: the clamped cubic spline interpolant

Given f(x); x_0, \ldots, x_n , how to find S(x)? **EXAMPLE**

$$x_i = ih$$
, $h = 1/n$, $x_0 = 0$, $x_n = 1$

STEP 1 (2nd derivative conditions)

Since $S_i(x)$ is a cubic polynomial, $S_i''(x)$ is linear for x

$$S_i''(x) = a_i \left(\frac{x_{i+1} - x}{h}\right) + a_{i+1} \left(\frac{x - x_i}{h}\right), \quad i = 0, \dots, n-1$$

(using Lagrange 1st order interpolating polynomial).

Then

$$\left. \begin{array}{l} S_i''(x_i) = a_i \\ S_i''(x_{i+1}) = a_{i+1} \end{array} \right\} \quad \Rightarrow \quad S_{i-1}''(x_i) = a_i = S_i''(x_i)$$

Thus, S''(x) is continuous at the interior nodes.

STEP 2 (function values)

Integrate twice

$$S_i(x) = \frac{a_i(x_{i+1} - x)^3}{6h} + \frac{a_{i+1}(x - x_i)^3}{6h} + b_i(x_{i+1} - x) + c_i(x - x_i)$$

the last two terms are written in this special form just for convenience

$$S_i(x_i) = a_i \frac{h^2}{6} + b_i h = f_i$$

$$S_i(x_{i+1}) = a_{i+1} \frac{h^2}{6} + c_i h = f_{i+1}$$

$$\begin{cases} b_i h = f_i - a_i \frac{h^2}{6} \\ c_i h = f_{i+1} - a_{i+1} \frac{h^2}{6} \end{cases}$$

Substitute

$$S_i(x) = \frac{a_i(x_{i+1} - x)^3}{6h} + \frac{a_{i+1}(x - x_i)^3}{6h} + \left(f_i - a_i \frac{h^2}{6}\right) \left(\frac{x_{i+1} - x}{h}\right) + \left(f_{i+1} - a_{i+1} \frac{h^2}{6}\right) \left(\frac{x - x_i}{h}\right)$$

STEP 3 (1st derivative conditions).

$$S_i'(x) = -\frac{a_i(x_{i+1} - x)^2}{2h} + \frac{a_{i+1}(x - x_i)^2}{2h} - \left(\frac{f_i}{h} - a_i \frac{h}{6}\right) + \left(\frac{f_{i+1}}{h} - a_{i+1} \frac{h}{6}\right) (1)$$

$$S_i'(x_i) = -a_i \frac{h}{2} - \left(\frac{f_i}{h} - a_i \frac{h}{6}\right) + \left(\frac{f_{i+1}}{h} - a_{i+1} \frac{h}{6}\right)$$
$$S_i'(x_{i+1}) = a_{i+1} \frac{h}{2} - \left(\frac{f_i}{h} - a_i \frac{h}{6}\right) + \left(\frac{f_{i+1}}{h} - a_{i+1} \frac{h}{6}\right)$$

We require, $S'_{i-1}(x_i) = S'_i(x_i)$, so (shifting $i \to i-1$ in $S'_i(x_{i+1})$)

$$a_{i} \frac{h}{2} - \left(\frac{f_{i-1}}{h} - a_{i-1} \frac{h}{6}\right) + \left(\frac{f_{i}}{h} - a_{i} \frac{h}{6}\right)$$
$$= -a_{i} \frac{h}{2} - \left(\frac{f_{i}}{h} - a_{i} \frac{h}{6}\right) + \left(\frac{f_{i+1}}{h} - a_{i+1} \frac{h}{6}\right)$$

Collect like terms

$$a_{i-1}\frac{h}{6} + a_i\left(\frac{h}{2} - \frac{h}{6} + \frac{h}{2} - \frac{h}{6}\right) + a_{i+1}\frac{h}{6} = \left(f_{i-1} - 2f_i + f_{i+1}\right)/h$$

Multiply both sides by $\frac{6}{h}$

$$a_{i-1} + 4a_i + a_{i+1} = \frac{6}{h^2} \left(f_{i-1} - 2f_i + f_{i+1} \right) \tag{2}$$

This holds for $i = 1, \ldots, n-1$.

STEP 4 (boundary conditions)

$$S_0''(x_0) = 0 \implies a_0 = 0$$

 $S_{n-1}''(x_n) = 0 \implies a_n = 0$ (*)

The coefficient matrix is

- tridiagonal
- \bullet symmetric

- positive definite
- strictly diagonally dominant

Notes:

- 1. For clamped splines, there are two additional equations that involve a_0 and a_n .
- 2. Condition (*) explains why the spline has additional inflection points. See the handout about natural cubic spline interpolation.

Recall

 $A = (a_{ij})$ is strictly diagonally dominant if

$$|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$$
 for all $i = 1, \dots, n$

Theorem If A is strictly diagonally dominant, then A is invertible.

Proof. Suppose A is not invertible. Then there exists a vector $x \neq 0$ such that Ax = 0. Choose index i such that $|x_i| = ||x||_{\infty} = \max_j |x_j|$. Then

$$0 = (Ax)_i = \sum_{j=1}^n a_{ij} x_j = a_{ii} x_i + \sum_{\substack{j=1\\j \neq i}}^n a_{ij} x_j$$

$$\Rightarrow |a_{ii}x_i| = \left| -\sum_{\substack{j=1\\j\neq i}}^n a_{ij}x_j \right| \le \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}||x_j|$$

$$\Rightarrow |a_{ii}| \le \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}| \frac{|x_j|}{|x_i|} \le \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}|$$

This contradicts the assumption that A is strictly diagonally dominant.

Note

In practice, the values $a_i = S''(x_i)$ are found by Gaussian elimination for a tridiagonal system.

Theorem Let f be defined on [a, b], $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$ and let S be the natural cubic spline interpolant of f (or clamped cubic spline).

1.
$$|f(x) - S(x)| \le \frac{5}{384} \max_{a < x < b} |f^{(4)}(x)| \cdot h^4$$

where $h = \max_i |x_{i+1} - x_i|$

$$\int_a^b [S''(x)]^2 dx \le \int_a^b [f''(x)]^2 dx \quad Minimum \ curvature \ property \ of \ cubic \ splines$$

Note

- 1. Cubic spline interpolation is 4^{th} order accurate.
- 2. Condition (2) is optimality property: spline S(x) "oscillates least" of all smooth functions satisfying interpolation condition + BC (natural BC or clamped spline $S'(x_0) = y'_0$, $S'(x_n) = y'_n$).

Curvature

$$\kappa(x) = \frac{|f''(x)|}{(1 + [f'(x)]^2)^{3/2}} \approx |f''(x)|$$

 $\Rightarrow \int_a^b [f''(x)]^2 dx$ is a crude measure of the total curvature over an interval.

$$\int_{a}^{b} [S''(x)]^{2} dx \le \int_{a}^{b} [f''(x)]^{2} dx :$$

any smooth interpolating function must have a total curvature at least as large as that of the cubic spline (natural or clamped)

Proof of (2) for natural splines

algebraic identity: $F^2 - S^2 = (F - S)^2 - 2S(S - F)$ Let F = f''(x), S = S''(x), integrate over [a, b].

$$\int_{a}^{b} [f''(x)]^{2} dx - \int_{a}^{b} [S''(x)]^{2} dx = \int_{a}^{b} [f''(x) - S''(x)]^{2} dx$$
$$-2 \int_{a}^{b} S''(x) (S''(x) - f''(x)) dx$$

The first term is ≥ 0 . We will show that the second term is 0. Integration by parts:

$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)|_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx$$

$$\int_{a}^{b} S''(x)(S''(x) - f''(x))dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} S''(x)(S''(x) - f''(x))dx$$

$$= \sum_{i=0}^{n-1} \left(S''(x)(S'(x) - f'(x))|_{x_{i}}^{x_{i+1}} - \int_{x_{i}}^{x_{i+1}} S'''(x)(S'(x) - f'(x))dx \right)$$

$$= -\sum_{i=0}^{n-1} S'''(x_{i}) \int_{x_{i}}^{x_{i+1}} (S'(x) - f'(x))dx$$

using $S''(x_0) = S''(x_n) = 0$; telescoping sum and $S_i'''(x)$ is constant

$$-\sum_{i=0}^{n-1} S'''(x_i)(S(x) - f(x))|_{x_i}^{x_{i+1}} = 0$$

using
$$S(x_i) = f(x_i), i = 0, ..., n$$
.