Example of inference for a percentile

In a recent year the first quartile of SAT verbal test scores nationally was $\theta_{.25}=430$. A particular school district claims that their new instructional methods will lead to an increase in the first quartile of SAT verbal scores. In a random sample of 100 students from the district, 19 students have SAT verbal scores below 430. Does this data support their claim?

Let $H_{0}: \theta_{.25}=430$ versus $H_{a}: \theta_{.25}>430$. If X_{i} is a student's SAT verbal score, then under H_{0} we have $P\left(X_{i}<430\right)=.25$, and $B=$ the number of students having scores below 430, is binomially distributed with $p=.25$ and $n=100$. Under H_{a} we expect to have fewer scores under 430, so our hypotheses about the quartile $\theta_{.25}, H_{0}: \theta_{.25}=430$ versus $H_{a}: \theta_{.25}>430$ translate into hypotheses about $p=P\left(X_{i}<430\right)$ as $H_{0}: p=.25$ versus $H_{a}: p<.25$. To calculate the P value for this test, we calculate the probability of observing $B \leq 19$ under H_{0}, which is:

$$
P \text { value }=P(B \leq 19 \mid n=100, p=.25)=\sum_{x=0}^{19}\binom{100}{x}(.25)^{x}(.75)^{100-x}
$$

We can calculate this probability directly or use the normal approximation to obtain a Z value:

$$
Z=\frac{19-n p}{\sqrt{n p(1-p)}}=\frac{19-(100)(.25)}{\sqrt{(100)(.25)(.75)}}=\frac{-6}{4.33}=-1.38
$$

The approximation can be improved by using a continuity correction:
$Z($ with continuity correction $)=\frac{19.5-n p}{\sqrt{n p(1-p)}}=\frac{19.5-(100)(.25)}{\sqrt{(100)(.25)(.75)}}=\frac{-5.5}{4.33}=-1.27$.
It turns out that $P(B \leq 19 \mid n=100, p=.25)=.10, P(Z<-1.38)=$.084 , and $P(Z<-1.27)=.102$, so at the $\alpha=.05$ significance level we would not reject H_{0} in favor of H_{a}.

To calculate a confidence interval for $\theta_{.25}$, we can use the same reasoning for the median and use:

$$
P\left(X_{(a)}<\theta_{.25}<X_{(b)}\right)=\sum_{x=a}^{b-1}\binom{n}{x}(.25)^{x}(.75)^{n-x}
$$

or its normal approximation to obtain an (approximate) confidence interval. For the SAT issue above we can use a normal approximation to solve for a and b for a 95% confidence interval for $\theta .25$ by using:

$$
\frac{(b-1)-n p}{\sqrt{n p(1-p)}}=\frac{(b-1)-25}{4.33}=1.96
$$

and

$$
\frac{a-n p}{\sqrt{n p(1-p)}}=\frac{a-25}{4.33}=-1.96
$$

to obtain $a=16.51$ and $b=34.49$. Using the book's rounding rule (which can lead to less than 95% coverage) we would use $\left(X_{(17)}, X_{(34)}\right)$ as our 95% confidence interval for $\theta .25$.

