Large Sample Approximations to Two-Sample Test Statistics

We can compute a large-sample approximation to the permutation distribution for any statistic that can be computed as a sum of scores associated with one of two treatments. A general such expression is:

\[T_1 = \sum a(R(X_i))I[X_i \text{ in group 1}] = \sum A_i I[X_i \text{ in group 1}], \]

where \(m \) and \(n \) are the two group sample sizes (with \(N = m + n \)) and \(A_i, i = 1, 2, ..., N \) are the general scores for the observations.

Under the null hypothesis of no difference between treatments, each score \(A_i \) is as likely to occur in treatment 1 as any other score. Thus, the \(m \) scores associated with treatment 1 occur as if they had been randomly selected without replacement from the set of combined scores from both groups. Thus we can calculate the expected value and variance of \(T_1 \), the sum of the scores from treatment 1, and use a normal approximation. From the theory of sampling from finite populations you can then show that:

\[
E(T_1) = m\mu = m \frac{\sum_{i=1}^{N} A_i}{N},\quad \text{and}
\]

\[
\text{Var}(T_1) = \frac{mn}{N-1} \sigma^2 = \frac{mn}{N-1} \frac{\sum_{i=1}^{N} (A_i - \mu)^2}{N} = \frac{mn}{N-1} \left(\frac{\sum_{i=1}^{N} A_i^2}{N} - \mu^2 \right).
\]

For \(m \) and \(n \) sufficiently large, \(T_1 \) is normally distributed, so

\[
\frac{T_1 - E(T_1)}{\sqrt{\text{Var}(T_1)}} \sim Z.
\]

Use with the Wilcoxon Rank-Sum Test

For the Wilcoxon test, the \(A_i \) values are just the ranks 1, 2, ..., \(N \). It is shown in the text that \(\mu = (N+1)/2 \) and \(\sigma^2 = (N-1)(N+1)/12 \) in this case, so in the case without ties, the expected value and variance of the rank-sum statistic \(W \) are:
\[E(W) = \frac{m(N + 1)}{2} \quad \text{and} \quad \text{Var}(W) = \frac{mn(N + 1)}{12}.\]

If there are ties in the data, then \(E(W)\) is unaffected, but \(\text{Var}(W)\) must be adjusted downward. In this case, \(\text{Var}(W)\) can be directly calculated (shown on page 68), or can be calculated via the formula:

\[\text{Var}(W) = \frac{mn(N + 1)}{12} - AF = \frac{mn(N + 1)}{12} - \frac{mn \sum (t_i^3 - t_i)}{12N(N - 1)},\]

where the \(t_i\) is the number of values tied in the \(i\)th tied group of values.

Use with a confidence interval based on the Mann-Whitney test.

From our earlier expression relating an interval for \(\Delta\) to the \(U\) distribution:

\[P(\text{pwd}(k_a) < \Delta \leq \text{pwd}(k_b)) = P(k_a \leq U \leq k_b - 1)\]

we can apply a normal approximation:

\[P(k_a \leq U \leq k_b - 1) = P\left(\frac{k_a - E(U)}{\sqrt{\text{Var}(U)}} \leq Z \leq \frac{k_b - 1 - E(U)}{\sqrt{\text{Var}(U)}}\right),\]

and then solve to find the desired order statistic values \(k_a\) and \(k_b\) via:

\[k_a \approx E(U) - z_{(1 - \alpha/2)}\sqrt{\text{Var}(U)} \quad \text{and} \quad k_b \approx 1 + E(U) + z_{(1 - \alpha/2)}\sqrt{\text{Var}(U)}.\]

Use with the permutation distribution of \(T_1\) with the raw data.

The text discusses obtaining a normal approximation for \(T_1\) for the raw data, but this approximation would generally require a larger sample size than the ones above to be accurate.