Large Sample Approximations to Two-Sample Test Statistics

We can compute a large-sample approximation to the permutation distribution for any statistic that can be computed as a sum of scores associated with one of two treatments. A general such expression is:

$$
T_{1}=\sum a\left(R\left(X_{i}\right)\right) I\left[X_{i} \text { in group 1] }=\sum A_{i} I\left[X_{i} \text { in group 1 }\right],\right.
$$

where m and n are the two group sample sizes (with $N=m+n$) and $A_{i}, i=1,2, \ldots, N$ are the general scores for the observations.

Under the null hypothesis of no difference between treatments, each score A_{i} is as likely to occur in treatment 1 as any other score. Thus, the m scores associated with treatment 1 occur as if they had been randomly selected without replacement from the set of combined scores from both groups. Thus we can calculate the expected value and variance of T_{1}, the sum of the scores from treatment 1, and use a normal approximation. From the theory of sampling from finite populations you can then show that:

$$
\begin{gathered}
E\left(T_{1}\right)=m \mu=m \frac{\sum_{i=1}^{N} A_{i}}{N}, \text { and } \\
\operatorname{Var}\left(T_{1}\right)=\frac{m n}{N-1} \sigma^{2}=\frac{m n}{N-1} \frac{\sum_{i=1}^{N}\left(A_{i}-\mu\right)^{2}}{N}=\frac{m n}{N-1}\left(\frac{\sum_{i=1}^{N} A_{i}^{2}}{N}-\mu^{2}\right) .
\end{gathered}
$$

For m and n sufficiently large, T_{1} is normally distributed, so

$$
\frac{T_{1}-E\left(T_{1}\right)}{\sqrt{\operatorname{Var}\left(T_{1}\right)}} \sim Z
$$

Use with the Wilcoxon Rank-Sum Test

For the Wilcoxon test, the A_{i} values are just the ranks $1,2, \ldots, N$. It is shown in the text that $\mu=(N+1) / 2$ and $\sigma^{2}=(N-1)(N+1) / 12$ in this case, so in the case without ties, the expected value and variance of the rank-sum statistic W are:

$$
E(W)=\frac{m(N+1)}{2} \text { and } \operatorname{Var}(W)=\frac{m n(N+1)}{12} .
$$

If there are ties in the data, then $E(W)$ is unaffected, but $\operatorname{Var}(W)$ must be adjusted downward. In this case, $\operatorname{Var}(W)$ can be directly calculated (shown on page 68), or can be calculated via the formula:

$$
\operatorname{Var}(W)=\frac{m n(N+1)}{12}-A F=\frac{m n(N+1)}{12}-\frac{m n \sum\left(t_{i}^{3}-t_{i}\right)}{12 N(N-1)},
$$

where the t_{i} is the number of values tied in the i th tied group of values.
Use with a confidence interval based on the Mann-Whitney test From our earlier expression relating an interval for Δ to the U distribution:

$$
P\left(\operatorname{pwd}\left(k_{a}\right)<\Delta \leq \operatorname{pwd}\left(k_{b}\right)\right)=P\left(k_{a} \leq U \leq k_{b}-1\right)
$$

we can apply a normal approximation:

$$
P\left(k_{a} \leq U \leq k_{b}-1\right)=P\left(\frac{k_{a}-E(U)}{\sqrt{\operatorname{Var}(U)}} \leq Z \leq \frac{k_{b}-1-E(U)}{\sqrt{\operatorname{Var}(U)}}\right),
$$

and then solve to find the desired order statistic values k_{a} and k_{b} via:

$$
k_{a} \approx E(U)-z_{(1-\alpha / 2)} \sqrt{\operatorname{Var}(U)} \text { and } k_{b} \approx 1+E(U)+z_{(1-\alpha / 2)} \sqrt{\operatorname{Var}(U)} .
$$

Use with the permutation distribution of T_{1} with the raw data
The text discusses obtaining a normal approximation for T_{1} for the raw data, but this approximation would generally require a larger sample size than the ones above to be accurate.

