The SAS System

<table>
<thead>
<tr>
<th>Obs</th>
<th>treatment</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6.08</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7.51</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>22.29</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>22.71</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>23.68</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>23.84</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>28.03</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>29.64</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>30.45</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>31.47</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>32.04</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>32.74</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>34.36</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>36.81</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>44.52</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-4.44089E-17</td>
<td>0.8688231</td>
<td>-1.5341205</td>
<td>1.5341205</td>
</tr>
</tbody>
</table>
Analysis Variable: rkvwy Rank for Variable y

<table>
<thead>
<tr>
<th>treatment</th>
<th>N Obs</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td>-0.6346493</td>
<td>0.9321871</td>
<td>-1.5341205</td>
<td>0.8871466</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>0.4971860</td>
<td>0.8692056</td>
<td>-0.6744898</td>
<td>1.5341205</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>0.1374632</td>
<td>0.4259213</td>
<td>-0.3186394</td>
<td>0.6744898</td>
</tr>
<tr>
<td>Obs</td>
<td>treatment</td>
<td>y</td>
<td>rkvwy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6.08</td>
<td>-1.53412</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7.51</td>
<td>-1.15035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>22.29</td>
<td>-0.88715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>22.71</td>
<td>-0.67449</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>23.68</td>
<td>-0.48878</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>23.84</td>
<td>-0.31864</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>28.03</td>
<td>-0.15731</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>29.64</td>
<td>-0.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>30.45</td>
<td>0.15731</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>31.47</td>
<td>0.31864</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>32.04</td>
<td>0.48878</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>32.74</td>
<td>0.67449</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>34.36</td>
<td>0.88715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>36.81</td>
<td>1.15035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>44.52</td>
<td>1.53412</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wilcoxon Scores (Rank Sums) for Variable y
Classified by Variable treatment

<table>
<thead>
<tr>
<th>treatment</th>
<th>N</th>
<th>Sum of Scores</th>
<th>Expected Under H0</th>
<th>Std Dev Under H0</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>24.0</td>
<td>40.0</td>
<td>8.164966</td>
<td>4.80</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>52.0</td>
<td>40.0</td>
<td>8.164966</td>
<td>10.40</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>44.0</td>
<td>40.0</td>
<td>8.164966</td>
<td>8.80</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Test

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>4.1600</td>
</tr>
<tr>
<td>DF</td>
<td>2</td>
</tr>
<tr>
<td>Pr > Chi-Square</td>
<td>0.1249</td>
</tr>
</tbody>
</table>

Monte Carlo Estimate for the Exact Test

<table>
<thead>
<tr>
<th>Pr >= Chi-Square</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1120</td>
</tr>
<tr>
<td>99% Lower Conf Limit</td>
<td>0.0938</td>
</tr>
<tr>
<td>99% Upper Conf Limit</td>
<td>0.1302</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Samples</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Seed</td>
<td>272204001</td>
</tr>
</tbody>
</table>
The NPARIWAY Procedure

Van der Waerden Scores (Normal) for Variable y Classified by Variable treatment

<table>
<thead>
<tr>
<th>treatment</th>
<th>N</th>
<th>Sum of Scores</th>
<th>Expected Under H0</th>
<th>Std Dev Under H0</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>-3.173246</td>
<td>0.0</td>
<td>1.586247</td>
<td>-0.634649</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2.485930</td>
<td>0.0</td>
<td>1.586247</td>
<td>0.497186</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0.687316</td>
<td>0.0</td>
<td>1.586247</td>
<td>0.137463</td>
</tr>
</tbody>
</table>

Van der Waerden One-Way Analysis

- **Chi-Square**: 4.4305
- **DF**: 2
- **Pr > Chi-Square**: 0.1091

Monte Carlo Estimate for the Exact Test

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr >= Chi-Square</td>
<td>0.1115</td>
</tr>
<tr>
<td>Estimate</td>
<td></td>
</tr>
<tr>
<td>99% Lower Conf Limit</td>
<td>0.0934</td>
</tr>
<tr>
<td>99% Upper Conf Limit</td>
<td>0.1296</td>
</tr>
</tbody>
</table>

- **Number of Samples**: 2000
- **Initial Seed**: 272345001
The SAS System

The NPARIWAY Procedure

<table>
<thead>
<tr>
<th>product</th>
<th>N</th>
<th>Sum of Scores</th>
<th>Expected Under H0</th>
<th>Std Dev Under H0</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>111.00</td>
<td>77.0</td>
<td>13.122500</td>
<td>15.857143</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>82.50</td>
<td>88.0</td>
<td>13.518242</td>
<td>10.312500</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>37.50</td>
<td>66.0</td>
<td>12.575486</td>
<td>6.250000</td>
</tr>
</tbody>
</table>

Average scores were used for ties.

Kruskal-Wallis Test

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>8.2466</td>
</tr>
<tr>
<td>DF</td>
<td>2</td>
</tr>
<tr>
<td>Pr > Chi-Square</td>
<td>0.0162</td>
</tr>
</tbody>
</table>

Monte Carlo Estimate for the Exact Test

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr >= Chi-Square</td>
<td>0.0125</td>
</tr>
<tr>
<td>Estimate</td>
<td></td>
</tr>
<tr>
<td>99% Lower Conf Limit</td>
<td>0.0061</td>
</tr>
<tr>
<td>99% Upper Conf Limit</td>
<td>0.0189</td>
</tr>
<tr>
<td>Number of Samples</td>
<td>2000</td>
</tr>
<tr>
<td>Initial Seed</td>
<td>272423001</td>
</tr>
</tbody>
</table>