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ENTROPY OF ABSOLUTE CONVEX HULLS IN
HILBERT SPACES

FUCHANG GAO

Abstract

The metric entropy of absolute convex hulls of sets in Hilbert spaces is studied for the general case
when the metric entropy of the sets is arbitrary. Under some regularity assumptions, the results
are sharp.

1. Introduction

The Krein–Milman theorem is a powerful tool in analysis. To quantify this
theorem, a number of researchers have studied the entropy numbers of the convex
hulls of precompact sets in a Banach space or a Hilbert space. The goal is to obtain a
sharp upper bound for the entropy of the convex hull conv(T ), knowing the entropy
of the set T . The importance of this problem was addressed by Dudley in [7], where
some special cases were studied. Dudley’s results were improved by Ball and Pajor
[2] and Carl [4], and extended to Banach spaces by Carl, Kyrezi and Pajor [5].
Recall that

N(S, ‖ · ‖, ε) := min

{
n : ∃ s1, s2, . . . , sn, such that S ⊂

n⋃
k=1

{x : ‖x − sk‖ < ε}
}

.

(When the space is Hilbert, or when there is no confusion, we write N(S, ε) for
short.) With such a notation, their results can be formulated as follows: as ε → 0+,

if N(T, ε)= O(ε−a), a > 0, then log N(conv(T ), ε)= O
(
ε−2a/(2+a)

)
;

if log N(T, ε)= O(ε−α), α > 2, then log N(conv(T ), ε)= O(ε−α);
if log N(T, ε)= O(ε−α), α < 2, then log N(conv(T ), ε)= O

(
ε−2(log(1/ε))1−2/α

)
.

The critical case α = 2 was later solved by Gao [8]. The best possible estimate
is log N(conv(T ), ε)= O(ε−2(log(1/ε))2). This last result has been extended to
Banach spaces [6].

Note that the answers are quite different for the case when the growth of N(T, ε)
is of power type, and the case when the growth is of exponential type. A natural
question has been asked in [4]: to find a sharp upper bound for N(conv(T ), ε) when
N(T, ε) has an arbitrary rate of growth. When T consists of a sequence of vectors of
decreasing length, the question was asked earlier in [2]. It should be pointed out that
although assuming that T consists of a sequence of vectors of decreasing length can
simplify the problem, it does not always give the same upper bound. For example,
when T consists of the sequence {xi} with ‖xi‖ � 1/

√
log(i + 1), then a result of
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Talagrand [16] says that log N(conv(T ), ε) = O(ε−2) = log N(T, ε). However, it
was proved in [8] that if one assumes only that log N(T, ε) = O(ε−2), then the best
upper estimate is log N(conv(T ), ε) = O(ε−2 log2(1/ε)). This is surprising, because
such a phenomenon does not appear when ε−2 is replaced by ε−α for α �= 2.
Therefore, the case around α = 2 seems to be more complicated.

The most interesting case in applications arises when the growth of N(T, ε)
satisfies the Dudley integral condition

∫∞
0

log N(T, ε) dε < ∞. Indeed, such a
condition guarantees that the Gaussian process Xt, t ∈ T , with E |Xt − Xs|2 =
‖t − s‖2 is sample bounded; that is, E supt∈T Xt < ∞. Clearly, such a set T must
be a bounded set. Therefore the upper limit of the Dudley integral above can be
replaced by diam(T ).

Let us also note that the case when T is finite needs to be excluded, because
in such a case it is impossible to bound N(conv(T ), ε) using N(T, ε). To keep the
statements of our results relatively simple, we assume the following slightly stronger
condition:

∫1

0

1
ε[N(T, ε)]p

dε < ∞, for some p > 0.

Instead of considering conv(T ), we will consider the absolute convex hull

abconv(T ) =

{ ∞∑
n=1

antn : tn ∈ T, n ∈ N,

∞∑
n=1

|an| � 1

}
.

The advantage of doing this is that the absolute convex hulls are symmetric, and
thus allow us to use duality. Clearly, N(conv(T ), ε) � N(abconv(T ), ε) for all ε > 0.

Our main result is as follows.

Theorem 1.1. Let T be a set in a Hilbert space with
∫∞
0

√
log N(T, ε) dε < ∞.

Denote I(x) =
∫x

0

√
log N(T, ε) dε. Suppose that

∫1

0

1
ε[N(T, ε)]p

dε < ∞, for some p > 0. (1)

Then there exists a constant C such that for any ε < diam(T ),

log N(abconv(T ), ε) � C inf
{

η2

ε2
+ F (η) : 0 < η <

diam(T )
C

}
,

where

F (x) =
∫diam(T )/x

1

N(T, tx)
log t

t
dt +

∫x/I−1(x)

1

N(T, x/t) exp
(
− t2

log4(t + 1)

)
dt.

Remark 1.1. The exponent 4 in the logarithm term above can be replaced by
any number larger than 2. However, unless it is near the critical case log N(T, ε) =
O(ε−2), such a replacement does not lead to any improvement. For example, under
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the regularity assumption log N(T, ε) ∼ cε−α logβ(1/ε) for some 0 < α < 2, and
β ∈ R, Theorem 1.1 leads to

log N(abconv(T ), ε) = O
(
ε−2(log(1/ε))1−2/α(log log(1/ε))2β/α

)
as ε → 0+,

which is best possible. (See Corollary 2.1 in the next section.)

2. Proofs

Let T be a set in Hilbert space H, and BH the unit ball of H. Without loss of
generality, we assume that 0 ∈ T . Let M be the set of all the signed measures µ
on T . Then

abconv(T ) =
{∫

T

tµ(dt) : µ ∈ M, ‖µ‖ � 1
}

.

For x ∈ H, define

‖x‖T := sup
t∈T

| 〈t, x〉 | = sup
t∈abconv(T )

| 〈t, x〉 |.

By the duality of entropy numbers (see [17]),

log N(abconv(T ), ε) = O(log N(BH , ‖ · ‖T , ε)), (2)

provided that the regularity of the covering number on the right-hand side holds,
as will become clear later in the proof.

It is a striking discovery of Kuelbs and Li [10] that metric entropy numbers are
closely related to small ball probabilities. Indeed, for λ > 0, denote Dλε = {x ∈ H :
‖x‖T � λε}, and m = N(BH , ‖ · ‖T , ε) = N(2λBH , ‖ · ‖T , 2λε). Then there exist
pairwise disjoint sets ai + Dλε with ‖ai‖ � 2λ, 1 � i � m.

Let γ be the standard Gaussian measure on H (see, for example, [3]). By
Anderson’s inequality [1],

γ(ai + Dλε) � e−‖ai‖2/2γ(Dλε) � e−2λ2
γ(Dλε).

Thus

N(BH , ‖ · ‖T , ε) = m � e2λ2
/γ(Dλε). (3)

Now, all we need to do is to obtain a sharp lower bound for γ(Dλε), which is achieved
by a standard chaining argument, together with the following lemma. This idea has
been used by a number of researchers; see, for example, [11, 13].

Lemma 2.1. (Khatri–S̆idák inequality [9, 14, 15]).

γ

({
sup
t∈A

| 〈x, t〉 | � ε, | 〈x, t0〉 | � ε

})
� γ ({| 〈x, t0〉 | � ε}) · γ

({
sup
t∈A

| 〈x, t〉 | � ε

})
.

The original proof of the Khatri–S̆idák inequality is lengthy. A simple proof can
be found in [12].

We will also use the following simple estimates.
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Lemma 2.2. Let γ be the standard Gaussian measure in Hilbert space H, and
let e be any unit vector in H. Then

γ({| 〈x, e〉 | < u}) �
{

u/3 0 < u < 1,

exp
(
−2e−u2/2

)
u � 1.

Now we turn to the proof of Theorem 1.1.
Fix η < diam(T )/3. Let Tn be a 2−nI−1(η)-net of T with minimum cardinality,

and let n0 be the largest integer such that Tn0 is a singleton. For each t ∈ T ,
and each integer n > n0, there exists sn−1(t) ∈ Tn−1, such that ‖t − sn−1(t)‖ �
2−n+1I−1(η). Denote Sn0 = Tn0 , and Sn = {t − sn−1(t) : t ∈ Tn} for n > n0.
Clearly, #Sn � N(T, 2−nI−1(η)), and for each yn ∈ Sn, ‖yn‖ � 2−n+1I−1(η).

Let k be the smallest integer such that 2−kI−1(η) � η. Because I(η) > η, we
have I−1(η) < η < diam(T )/3. Thus, n0 < k � 0.

Let K > 6 be a constant whose value will be specified later. It is easy to see that
for any non-negative sequence {cn} with

∑
n�n0

cn � 1, we have

{
x : sup

t∈T
| 〈x, t〉 | < Kη

}
⊃ {x : | 〈x, yn〉 | � Kcnη, yn ∈ Sn, n � n0}.

Applying the Khatri–S̆idák inequality (Lemma 2.1), we obtain

γ(DKη) �
∞∏

n=n0

∏
yn ∈Sn

γ ({| 〈x, yn〉 | � Kcnη}) .

Note that for each yn ∈ Sn, ‖yn‖ � 2−n+1I−1(η), we can further write

γ(DKη) �
∞∏

n=n0

(
γ

{
| 〈x, e〉 | � Kcn2n−1η

I−1(η)

})#Sn

, (4)

where e is a unit vector in H.
We will split (4) into three products:

∏∞
n=0,

∏−1
n=k and

∏k−1
n=n0

.
To study the first product, we choose

cn =
1
3
· I−1(η)2−n

η

√
log N(T, 2−nI−1(η))

for n � 0. Note that

∞∑
n=0

cn � 1
3
· I−1(η)

η

∫1

0

√
log N(T, sI−1(η)) ds

=
1
3
· 1
η

∫ I−1(η)

0

√
log N(T, s) ds

=
1
3
.
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Applying Lemma 2.2, and using the fact that #Sn � N(T, 2−nI−1(η)), we obtain

∞∏
n=0

γ

({
| 〈x, e〉 | � Kcn2n−1η

I−1(η)

})#Sn

=
∞∏

n=0

γ

({
| 〈x, e〉 | � K

6

√
log N(T, 2−nI−1(η))

})#Sn

�
∞∏

n=0

exp
(
−2(#Sn) · exp

(
−K2

72
log N(T, 2−nI−1(η))

))

�
∞∏

n=0

exp
(
−2[N(T, 2−nI−1(η))]1−K2/72

)

= exp

(
−2

∞∑
n=0

[N(T, 2−nI−1(η))]1−K2/72

)

� exp

(
−2

∫ I−1(η)

0

1
t[N(T, t)]K2/72−1

dt

)

� 1
2

(5)

for K large enough, where in the last inequality we used assumption (1).
To bound the second product, we choose cn = 1/6(n − k + 1)2 for k � n � −1.

Then
∑−1

n=k cn < 1/3. Note that

Kcn2n−1η

I−1(η)
� K2n−k

12(n − k + 1)2
,

which is no less than 1 for K � 24. Applying Lemma 2.2, and using the fact that

#Sn � N(T, 2−nI−1(η)) � N(T, 2−n+k−1η),

we obtain

−1∏
n=k

(
γ

{
| 〈x, e〉 | � Kcn2n−1η

I−1(η)

})#Sn

�
−1∏

n=k

(
γ

{
| 〈x, e〉 | � K2n−k

12(n − k + 1)2

})#Sn

�
−1∏

n=k

exp
(
−2(#Sn) · exp

(
−K2(2n−k)2

288(n − k + 1)4

))

� exp

(
−2

−1∑
n=k

N(T, 2−n+k−1η) · exp
(

−K2(2n−k)2

288(n − k + 1)4

))

� exp

(
−c

∫η/I−1(η)

1

N(T, η/t) exp(−t2/ log4(t + 1)) dt

)
, (6)

for some c > 1, provided that K is large enough; say, K > 20.
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To bound the third product, we choose cn = 2n−k−2 for n0 � n � k − 1. Then∑k−1
n=n0

cn � 1/3, and

Kcn2n−1η

I−1(η)
� Kcn2n−12−k > 22n−2k

for K > 8. Applying Lemma 2.2, and using #Sn � N(T, 2−nI−1(η)) �
N(T, 2k−n−1η), we obtain

k−1∏
n=n0

γ

({
| 〈x, e〉 | � Kcn2n−1η

I−1(η)

})#Sn

�
k−1∏

n=n0

γ({| 〈x, e〉 | � 22n−2k})#Sn

�
k−1∏

n=n0

(22n−2k−2)N(T,2k−n−1η)

= exp

(
−

k−1∑
n=n0

2N(T, 2k−n−1η) log 2k−n−1

)

� exp

(
−c

∫diam(T )/η

1

N(T, tη)
log t

t
dt

)
(7)

for some c > 1.
Combining (4)–(7), and recalling the definition of F (x) in the statement of

Theorem 1.1, we find that

γ(DKη) � 1
2

exp(−cF (η)), (8)

for some c > 1, provided that K is large enough, depending on assumption (1).
Applying (8) to (3), we obtain

log N(B, ‖ · ‖T , ε) � inf
λ
{2λ2 + cF (λε/K) : λε � diam(T )/3} + log 2

� K ′ inf
{

λ2

ε2
+ F (λ) : λ <

diam(T )
K ′

}
. (9)

Theorem 1 follows by applying (9) to (2).

The statement of Theorem 1.1 can be simplified if the growth of the entropy
N(T, ε) is not extremely slow. Indeed, we have the following corollary.

Corollary 2.1. Let T be a set in a Hilbert space with
∫∞
0

√
log N(T, ε) dε <

∞. Denote I(x) =
∫x

0

√
log N(T, ε) dε. Suppose that there exists C > 1 such that

N(T, ε/2) > CN(T, ε)

for all small ε; then there exists a constant K such that

log N(abconv(T ), ε) � K inf
{

λ2

ε2
+ G(λ) : 0 < λ <

diam(T )
K

}
,
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where

G(x) =
∫x/I−1(x)

1

N(T, x/t) exp
(
− t2

log4(t + 1)

)
dt � N(T, I−1(x)).

In particular, if log N(T, ε) ∼ cε−α logβ(1/ε) for some 0 < α < 2, and β ∈ R, then

log N(abconv(T ), ε) � Kε−2(log(1/ε))1−2/α(log log(1/ε))2β/α.

Proof. For t � 1, let k be the largest integer such that t � 2k. Then

N(T, tx) � N(T, 2kx) � C−kN(T, x) � C

tlog2 C
N(T, x).

Thus ∫diam(T )/x

1

N(T, tx)
log t

t
dt � N(T, ε)

∫∞

1

C log t

tlog2 C+1
dt � KN(T, x). (10)

Plugging this into the function F (x) in Theorem 1.1, we have

F (x) � KN(T, x) + G(x).

Note that for small x, x/I−1(x) > 2; thus

G(x) �
∫2

1

N(T, x/t) exp
(
− t2

log4(t + 1)

)
dt

� 1
C

N(T, x)
∫2

1

exp
(
− t2

log4(t + 1)

)
dt

� 1
25C

N(T, x).

Hence F (x) � K1G(x) for some constant K1. The first part of the corollary follows.
The inequality G(x) < N(T, I−1(x)) is almost trivial. In fact,

G(x) =
∫x/I−1(x)

1

N(T, x/t) exp
(
− t2

log4(t + 1)

)
dt

� N(T, I−1(x))
∫∞

1

exp
(
− t2

log4(t + 1)

)
dt

� N(T, I−1(x)).

When log N(T, ε) ∼ cε−α(log(1/ε))β for some 0 < α < 2 and β ∈ R, we have

I(x) ∼
√

c

∫x

0

ε−α/2(log(1/ε))β/2 ∼ c′x1−α/2(log(1/x))β/2

for x < 1. Thus
I−1(x) ∼ c′′x2/(2−α)[log(1/x)]−β/(2−α).

Hence
G(x) � N(T, I−1(x)) ∼ exp

(
Cx−2α/(2−α)[log(1/x)]2β/(2−α)

)
,

and therefore

inf
{

λ2

ε2
+ G(λ)

}
� inf

{
λ2

ε2
+ exp

(
Cλ−2α/(2−α)[log(1/λ)]2β/(2−α)

)}
� Kε−2(log(1/ε))1−2/α(log log(1/ε))2β/α,

finishing the proof.
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Remark 2.1. Though the trivial inequality G(x) � N(T, I−1(x)) is used to
obtain the estimate for the case log N(T, ε) ∼ ε−α logβ(1/ε), a simple modification
of the example in [4] shows that the estimate obtained is indeed sharp. However,
when N(T, ε) has a slow rate of growth, the trivial inequality G(x) � N(I−1(x))
no longer gives the sharp estimate, as we see in Corollary 2.2.

Corollary 2.2. Let T be a set in a Hilbert space with
∫∞
0

√
log N(T, ε) dε <

∞. Denote I(x) =
∫x

0

√
log N(T, ε) dε. Suppose that there exist constants 1 < C1 <

C2 such that for all ε < diam(T ),

C1N(T, ε) � N(T, ε/2) � C2N(T, ε).

Then

log N(abconv(T ), ε) � K inf
{

λ2 + N(T, λε) : 0 < λ <
diam(T )

ε

}
.

In particular, if N(T, ε) ∼ ε−α logβ(1/ε) for some α > 0 and β ∈ R, then

log N(abconv(T ), ε) � KN(T, ε)2/(2+α).

Proof. In view of Corollary 2.1, all we need to show is that

G(x) =
∫x/I−1(x)

1

N(T, x/t) exp
(
− t2

log4(t + 1)

)
dt � KN(T, x).

However, this is easy to see because N(T, x/t) � C2t
log2 C2N(T, x) for t > 1, and

the integral ∫∞

1

tlog2 C2 exp
(
− t2

log4(t + 1)

)
dt

converges.
The estimate for the special case when N(T, ε) ∼ ε−α logβ(1/ε) is just a

straightforward calculation.

Remark 2.2. It is not difficult to modify the example in [2] to show that the
estimate for the case N(T, ε) ∼ ε−α logβ(1/ε) is also sharp. In general, to study
the sharpness of Theorem 1.1, one needs to construct examples when N(T, ε) is
arbitrary. In principle, this can be done if some regularity on N(T, ε) is assumed.
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