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Abstract

Let {ξn} be a sequence of i.i.d. positive random variables with common distri-
bution function F (x). Let {an} and {bn} be two positive non-increasing summable
sequences such that

∏∞
n=1(an/bn) converges. Under some mild assumptions on F ,

we prove the following comparison

Pr

( ∞∑
n=1

anξn ≤ ε

)
∼

( ∞∏
n=1

bn
an

)−α

Pr

( ∞∑
n=1

bnξn ≤ ε

)
,

where

α = lim
x→∞

logF (1/x)

log x
< 0

is the index of variation of F (1/·). When this result is applied to the case ξn = |Zn|p
and {Zn} is a sequence of i.i.d. standard Gaussian random variables, it affirms a
conjecture of Li [9].
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1 Introduction

Let {ξn} be a sequence of i.i.d. positive random variables with common distribution

function F (x) and {an} a positive summable sequence. It is of great interest to know the

small deviation probability of the sum

V =
∞∑
n=1

anξn.

For example, in the study of the natural rates of escape of infinite-dimensional Brownian

motions, it is crucial to understand probabilities of this type (see, eg., Erickson [6] page

332, also see Cox[4]).

When ξn = Z2
n where {Zn} is a sequence of i.i.d. standard Gaussian random variables,

by the Karhunen-Loève expansion, V is just the square of the L2 norm of a centered Gaus-

sian process on [0, 1] with {an} being the sequence of eigenvalues of the corresponding

covariance operator. In this case Sytaja [13] gave a complete description of the small

deviation behavior in terms of the Laplace transform of V .

Lifshits [11] considerably extended this result to a large class of i.i.d. positive random

variables that satisfy the following condition:

Condition 1. There exist constants b ∈ (0, 1), c1, c2 > 1 and ε > 0 such that for each

r ≤ ε the inequality c1F (br) ≤ F (r) ≤ c2F (br) holds.

Denote the Laplace transform of ξ1 by

I(s) =

∫
[0,∞)

e−sxdF (x)

and the cumulant generating function of ξ1 by

f(s) = log I(s).

We can state the following result of Lifshits [11]:
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Theorem 1. (Lifshits, 1997) Under Condition 1, if the sequence {an} is positive and

summable, then as ε → 0+

Pr (V ≤ ε) ∼
(
2πγ2h′′

a(γ)
)−1/2

exp {γε+ ha(γ)}

where

ha(γ) = logE (exp{−γV }) =
∞∑
n=1

f(anγ) (1)

and γ = γ(ε) satisfies

lim
ε→0

γε+ γh′
a(γ)√

γ2h′′
a(γ)

= 0.

Here and in what follows x(ε) ∼ y(ε) as ε → 0 means limε→0 x(ε)/y(ε) = 1.

Although Theorem 1 is extremely useful, it may be difficult to apply directly for a

specific sequence {an}. This is because one would need to know to some extent the

Laplace transform of V . The fact that γ is defined implicitly is just a matter of inconve-

nience. A useful method for obtaining closed form expressions for the Laplace transform

E (exp{−γV }), especially in the case where ξn = Z2
n, is outlined in the recent paper Gao

et al. [8]. Therefore, at least in situations where the method of [8] applies, the problem

of obtaining the small deviation probability is simplified. However, closed form expres-

sions for Laplace transforms are rarely obtained in general, and this greatly restricts the

usefulness of Theorem 1.

By using Theorem 1, Dunker, Lifshits and Linde [5] obtain similar results when the

random variables satisfy the following additional condition:

Condition 2. The function sf ′(s) = sI ′(s)/I(s) is of bounded variation on [0,∞).

The advantage of the results in [5] over Theorem 1 is that the asymptotic behavior

of the small deviation probability of V is expressed (implicitly) in terms of the Laplace

transform of ξ1 instead of the Laplace transform of V .
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However, their results assume the existence of a function ϕ that is positive, logarith-

mically convex, twice differentiable and integrable on [1,∞) such that an = ϕ(n). In

applications {an} often oscillates along a sequence that satisfies these extra assumptions.

For example, if V is the square of the L2 norm of anm-times integrated Brownian motion,

then an = [π(n−1/2)+en]
−(2m+2), where the varying oscillation en decays exponentially.

The purpose of this paper is to provide a method that enables one to compute small

deviations for a general sequence {an} such as the one mentioned above. One of the first

results in this direction is the following comparison theorem of Li [9]:

Theorem 2. (Li, 1992) Let {an} and {bn} be two positive non-increasing summable

sequences such that
∑∞

n=1 |1− an/bn| < ∞. Let {Zn} be a sequence of i.i.d. standard

Gaussian random variables. Then as ε → 0

Pr

(
∞∑
n=1

anZ
2
n ≤ ε2

)
∼

(
∞∏
n=1

bn/an

)1/2

Pr

(
∞∑
n=1

bnZ
2
n ≤ ε2

)
. (2)

This comparison theorem is a very useful tool (see, e.g., [10]). Typically, bn = ϕ(n)

so that one can compute the small deviation asymptotics on the righthand side of (2) by

using the results of [5]. {bn} can also be chosen so that one can find the exact expression of

the Laplace transform of the corresponding series using the method of [8]. Recently Gao

at al. [7] improved upon Theorem 2 by replacing the condition
∑∞

n=1 |1− an/bn| < ∞

by the convergence of the infinite product
∏∞

n=1(an/bn).

We would like to extend Li’s theorem to random variables that satisfy Conditions 1

and 2. Note that the Conditions 1 and 2 guarantee ([5], page 62) the existence of a finite

negative constant

α := lim
x→∞

logF (1/x)

log x
= lim

s→∞
sf ′(s) = − lim

s→∞
s2f ′′(s) =

1

2
lim
s→∞

s3f ′′′(s). (3)

The constant α is called the index of variation of F (1/·) and arises in the theory of

regular variation (see [2]).
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In this paper, we prove

Theorem 3. Let {ξn} be a sequence of i.i.d. positive random variables having cumulative

distribution function F (x) satisfying conditions 1 and 2. Let {an} and {bn} be positive,

non-increasing, summable sequences that satisfy
∑∞

n=1 |1−an/bn| < ∞. Then as ε → 0+

Pr

(
∞∑
n=1

anξn ≤ ε

)
∼

(
∞∏
n=1

bn
an

)−α

Pr

(
∞∑
n=1

bnξn ≤ ε

)
,

where α is defined by (3).

Under a slightly stronger assumption on the distribution of ξ1, we can weaken the

assumption about the convergence of
∑∞

n=1 |1− an/bn|.

Theorem 4. Let {ξn} be a sequence of i.i.d. positive random variables having cumu-

lative distribution function F (x) satisfying condition 1 and 2. Let {an} and {bn} be

positive, non-increasing, summable sequences such that
∏∞

n=1(an/bn) converges. Further

suppose either (i) sI(j+1)(s)/I(j)(s), j = 0, 1, 2 are bounded monotone on [0,∞); or (ii)

sI(j+1)(s)/I(j)(s), j = 0, 1, 2 are of bounded variation on [0,∞), and
∑∞

n=1(
an
bn
−1)2 < ∞.

Then as ε → 0+

Pr

(
∞∑
n=1

anξn ≤ ε

)
∼

(
∞∏
n=1

bn
an

)−α

Pr

(
∞∑
n=1

bnξn ≤ ε

)
,

where α is defined by (3).

Remark 1. Though the conditions on bounded variation might seem difficult to check

often it is not so. In fact there are many examples of random variables ξn that satisfy the

conditions of this theorem (see Section 5). For a useful survey of results on the theory

of bounded variation see also Section 5 of [5].

A particularly interesting example is when ξn = |Zn|p where {Zn} is an i.i.d. sequence

of standard Gaussian random variables. In this case F (1/x) ∼ x−1/p
√
2/π and the con-

ditions of Theorem 4 can be readily verified. The following corollary affirms a conjecture

of Li [9].
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Corollary 1. Let {Zn} be a sequence of i.i.d. standard Gaussian random variables,

and let {an} and {bn} be two positive, non-increasing summable sequences such that∏∞
n=1(bn/an) < ∞. Then for any p > 0 as ε → 0+

Pr

(
∞∑
n=1

an|Zn|p ≤ εp

)
∼

(
∞∏
n=1

bn
an

)1/p

Pr

(
∞∑
n=1

bn|Zn|p ≤ εp

)
.

The following interesting fact proved in [7] shows that one can often calculate the

product
∏∞

n=1(bn/an) < ∞ explicitly.

Proposition 1. Let f(z) and g(z) be entire functions with only positive real simple zeros.

Denote the zeros of f by α1 < α2 < α3 < · · · and the zeros of g by β1 < β2 < β3 < · · · .

If

lim
k→∞

max
|z|=rk

∣∣∣∣f(z)g(z)

∣∣∣∣ = 1

where the sequence of radii rk tending to ∞ are chosen so that βk < rk < βk+1 for large

k, then
∞∏
n=1

αn

βn

=

∣∣∣∣f(0)g(0)

∣∣∣∣ .
The rest of the paper is organized as follows. In Section 2 we show how such a

comparison can be used to find exact small deviation rates. A short proof of Theorem 3

is supplied in Section 3. The proof of Theorem 4 is more involved and given in Section 4.

The last section provides a proof of Corollary 1 and comments on how to verify the

conditions of our theorems.

2 An example

Consider the random variable
∞∑
n=1

πn|Zn|p, (4)
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where {Zn} is a sequence of i.i.d. standard Gaussian random variables,

πn =
Γ(n+ d)

Γ(d)Γ(n+ 1)

and −1/2 < d < 0. This process is an example of a fractionally integrated ARMA

process that has been used to model many so-called long memory time series such as

annual minimal water levels of the Nile river and internet traffic data (see, for example,

section 10.5 of [3]).

A simple calculation based on [1] (formula 6.1.47) shows that

πn =
1

Γ(d)
(n+ d/2 + en)

−(1−d),

where en = O(1/n) and −1/2 < d < 0.

If we let

ρn =
1

Γ(d)
(n+ d/2)−(1−d),

then
∏∞

n=1 πn/ρn converges, and Corollary 1 allows us to estimate the small deviation

probability of (4).

Before continuing with this example, we first establish a small deviation result for∑∞
n=1 bn|Zn|p, where {Zn} is a sequence of i.i.d. standard Gaussian random variables and

bn = (n+ c)−A with A > 1.

For simplicity of notation we define

K = −
∫ ∞

0

t−1/AI ′(t)/I(t) dt, where I(t) =

√
2

π

∫ ∞

0

e−txp−x2/2 dx. (5)

Notice I(t) is the Laplace transform of the random variable ξ = |Z1|p and K is a well

defined constant depending only on A and p. However, although K can be calculated

rather easily for p = 2, we are not aware of a closed form expression for K whenever

p ̸= 2.

The following lemma is a straightforward consequence of Corollary 3.2 of Dunker,

Lifshits and Linde [5].
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Lemma 1. If bn = (n+ c)−A, then as ε → 0+,

Pr

(
∞∑
n=1

bn|Zn|p ≤ εp

)
∼ C(c, A)ε

p−A(1+2c)
2(A−1) exp

(
−(A− 1)

(
K

A

) A
A−1

ε−
p

A−1

)
,

where

C(c, A) =
2

−3−2 c+2A
p

4 A
A+2Ac+p−2Ap

2 p−2Ap K
A+2Ac−Ap
−2 p+2Ap π

−1+2 c+2A
p

4

Γ(1 + 1
p
)
1
2
+c
Γ(1 + c)

A
p √

A− 1

.

When p = 2 this lemma has been proved recently by Nazarov and Nikitin [12]. For a

calculation of the constant Cϕ below see [12].

Proof. Using the notation of [5]:

ϕ(t) = (t+ c)−A,

I0(u) = −(1 + c) log(
√

2/π I((1 + c)−Au)−Ku1/A +
A(1 + c)

p
+ o(1),

I1(u) = −K

A
u1/A +

1 + c

p
+ o(1),

I2(u) =
K(A− 1)

A2
u1/A + o(u1/A),

Cϕ = A

{
log Γ(1 + c)− (

1

2
+ c) log(1 + c) + (1 + c)− 1

2
log(2π)

}
,

u ∼
(

K

Aεp

) A
A−1

as u → ∞ (and, thus, as ε → 0+). The lemma now follows by plugging these quantities

into Corollary 3.2 of Dunker, Lifshits and Linde [5].

Combining Corollary 1 and this lemma one easily verifies

Corollary 2. For πn and Zn defined above

Pr

(
∞∑
n=1

πn|Zn|p ≤ εp

)
∼ Cε

1−d2−p
2d exp

(
d

(
K

1− d

) d−1
d

ε
p
d

)
,

where

C = C(d/2, 1− d)
∞∏
n=1

(
Γ(1 + n)

Γ(d+ n) (n+ d/2)1−d

)1/p

,

C(·, ·) was defined in Lemma 1 and K was defined in (5).
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3 Proof of Theorem 3

We begin with some lemmas that will be used. From (1) we define

ha(x) =
∞∑
n=1

f(anx) and hb(x) =
∞∑
n=1

f(bnx).

Lemma 2. Suppose the cumulative distribution function F satisfies conditions 1 and 2,

and let y = y(x) be chosen to satisfy h′
a(x) = h′

b(y). If
∑∞

n=1 |1− an/bn| converges, then

as x → ∞

[xh′
a(x)− ha(x)]− [yh′

b(y)− hb(y)] → −α log
∞∏
n=1

an
bn

where α is given by (3).

Proof. Without loss of generality, we assume x ≥ y. By the mean value theorem, for any

continuously differentiable function g on (0,∞),

g(x)− g(y) =

∫ x

y

tg′(t) · 1
t
dt = log

(
x

y

)
θg′(θ), (6)

for some θ between x and y. Applying (6) to the function g(t) = tf ′(t), we have

xh′
a(x)− xh′

b(x) =
∞∑
n=1

[anxf
′(anx)− bnxf

′(bnx)]

=
∞∑
n=1

log

(
an
bn

)
[θ2nf

′′(θn) + θnf
′(θn)], (7)

where θn is between anx and bnx.

Since sf ′(s) is of bounded variation, s2f ′′(s) + sf ′(s) → 0 as s → ∞. Also, since we

are assuming
∑∞

n=1 |1− an/bn| < ∞, we have
∑∞

n=1 |log (an/bn)| < ∞. Therefore, by the

bounded convergence theorem (7) converges to 0 as x → ∞.

On the other hand, by Mean Value Theorem, h′
b(y)− h′

b(x) = (y − x)h′′
b (η) for some
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η between x and y. Thus,

xh′
a(x)− xh′

b(x) = x[h′
b(y)− h′

b(x)]

=
∞∑
n=1

bnx(y − x)bnf
′′(bnη)

= (y/x− 1)
x2

η2

∞∑
n=1

b2nη
2f ′′(bnη).

Because s2f ′′(s) → −α > 0 as s → ∞,

∞∑
n=1

b2nη
2f ′′(bnη) → ∞.

On the other hand, we have shown that (7) converges to 0. This implies that x ∼ y,

which in turn implies that (y
x
− 1
) ∞∑

n=1

η2nf
′′(ηn) → 0 (8)

for any ηn between anx and bny as x → ∞.

Now, applying (6) to the function sf ′(s)− f(s), we obtain

[xh′
a(x)− ha(x)]− [yh′

b(y)− hb(y)]

=
∞∑
n=1

[anxf
′(anx)− f(anx)]− [bnyf

′(bny)− f(bny)]

=
∞∑
n=1

log

(
anx

bny

)
· ζ2nf ′′(ζn)

=
∞∑
n=1

log

(
an
bn

)
· ζ2nf ′′(ζn) + log(x/y)

∞∑
n=1

ζ2nf
′′(ζn).

From (8) the second series on the right hand side converges to 0. The lemma then follows

by applying the bounded convergence theorem on the first series on the right.

Lemma 3. Under the assumptions of Lemma 2, we have x2h′′
a(x) ∼ y2h′′

b (y) as x → ∞.

Proof. Because x2h′′
a(x) =

∑∞
n=1 a

2
nx

2f ′′(anx) is bounded away from 0, we just need to

show that x2h′′
a(x)−y2h′′

b (y) → 0 as x → ∞. Applying (6) to the function g(t) = t2f ′′(t),
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we have

x2h′′
a(x)− y2h′′

b (y) =
∞∑
n=1

[a2nx
2f ′′(anx)− b2ny

2f ′′(bny)]

=
(
1− y

x

) ∞∑
n=1

a2nx
2f ′′(anx) ·

log(x/y)

1− y
x

· a
2
nx

2f ′′(anx)− b2ny
2f ′′(bny)

a2nx
2f ′′(anx)(log x− log y)

=
(
1− y

x

) ∞∑
n=1

a2nx
2f ′′(anx) ·

log(x/y)

1− y
x

· t
3
nf

′′′(tn) + 2t2nf
′′(tn)

a2nx
2f ′′(anx)

,

where tn lies between anx and bny. The second and third factors in the summation on

the right hand side are bounded. In fact, the third factor goes to 0 as x → ∞ (see (3)).

What remains is exactly the sum in (8) and converges to 0 as x → ∞. Therefore, the

series above converges to 0 as x → ∞.

Proof of Theorem 3. From Theorem 1 we have

P (
∑∞

n=1 anξn ≤ ε)

P (
∑∞

n=1 bnξn ≤ ε)
=

(
x2h′′

a(x)

y2h′′
b (y)

)−1/2

exp {− ([xh′
a(x)− ha(x)]− [yh′

b(y)− hb(y)])} .

The proof now follows easily from Lemmas 2 and 3.

4 Proof of Theorem 4

The proof of Theorem 4 is a little more involved. It is more convenient to use the function

I(s) instead of f(s).

Lemma 4. For all s > 0 and |ε| < 1, we have

I(j)((1 + ε)s)

I(j)(s)
≥ 1 +

sI(j+1)(s)

I(j)(s)
ε for j = 0, 1, 2.

Furthermore, if xI(j+1)(x)/I(j)(x) is bounded monotonic on [0,∞), then

log
I(j)((1 + ε)s)

I(j)(s)
≤ sI(j+1)(s)

I(j)(s)
log(1 + ε).
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Proof. Note that I(j)(s) = (−1)j
∫∞
0

tje−stdF (t). Taylor’s theorem gives

I(j)(s+ εs) = I(j)(s) + I(j+1)(x)εs+
(εs)2

2
I(j+2)(ξ)

Thus,

I(j)(s+ εs)

I(j)(s)
≥ 1 +

I(j+1)(s)

I(j)(s)
εs.

If xI(j+1)(x)/I(j)(x) is bounded monotonic on [0,∞), because xI(j+1)(x)/I(j)(x) is

negative and approaches to 0 as x → 0+, the function must be decreasing. In particular,

x(xI(j+1)(x)/I(j)(x))′ is negative at x = set for all s > 0. This implies that log I(j)(set)

is a concave function of t. In particular, it is below its tangent line at t = 0, finishing the

proof.

Lemma 5. Suppose
∑∞

n=1 cn converges, and suppose g has total variation D on [0,∞).

Then, for any monotonic non-negative sequence {dn},∣∣∣∣∣∑
n>N

cng(dn)

∣∣∣∣∣ ≤ D sup
k>N

∣∣∣∣∣
∞∑
n=k

cn

∣∣∣∣∣ .
This lemma is a consequence of Abel’s summation formula. The proof is elementary

and we omit the details.

Lemma 6. Under the assumptions of Theorem 4,
∞∏

n=N

I(j)(anx)

I(j)(bnx)
converges to 1 uniformly

as N → ∞.

Proof. Set Cj(s) = sI(j+1)(s)/I(j)(s) and let an = (1 + εn)bn. Under the convergence

assumption of
∏∞

n=1 an/bn and
∑∞

n=1(an/bn−1)2, we have that
∑∞

n=1 εn converges. Since

Cj(s) is bounded, there exists Mj > 0 and N ∈ N, such that for n > N and s > 0,

|Cj(s) · εn| ≤ Mj|εn| < 1. By Lemma 4, we have

∏
n>N

I(j)(anx)

I(j)(bnx)
≥
∏
n>N

(1 + Cj(bnx)εn).
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Applying Lemma 5 with cn = εn and dn = bnx and g(x) = Cj(x), we obtain∣∣∣∣∣∑
n>N

Cj(bnx)εn

∣∣∣∣∣ ≤ D sup
k>N

∣∣∣∣∣
∞∑
n=k

εn

∣∣∣∣∣ .
Thus,

∑
n>N Cj(bnx)εn converges to 0 uniformly (in x) as N → ∞, which implies that∏

n>N(1− Cj(bnx)εn) converges to 1 uniformly as N → ∞. Thus,

lim
N→∞

inf
x∈(0,∞)

∞∏
n=N

I(j)(anx)

I(j)(bnx)
≥ 1.

Similarly,

lim
N→∞

inf
x∈(0,∞)

∞∏
n=N

I(j)(bnx)

I(j)(anx)
≥ 1.

In the case when sI(j+1)(s)/I(j)(s) are of bounded monotone on [0,∞), j = 0, 1 and

2, We use the inequality

∏
n>N

I(j)(anx)

I(j)(bnx)
≤ exp

(∑
n>N

Cj(bnx) log(1 + εn)

)

to start, and the rest is similar.

Lemma 7. Under the assumptions of Lemma 6, as x → ∞ we have

1. ha(x)− hb(x) → α log
∞∏
n=1

an
bn

,

2. xh′
a(x)− xh′

b(x) → 0, and

3. x2h′′
a(x)− x2h′′

b (x) → 0.

Proof. First,

ha(x)− hb(x) = log
∞∏
n=1

I(anx)

I(bnx)
.

The fact that I(s) ∼ Γ(1− α)F (1/s) implies for any fixed N

N−1∏
n=1

I(anx)

I(bnx)
→

(
N−1∏
n=1

an
bn

)α
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as x → ∞. The first statement of the lemma now follows from Lemma 6.

Second,

xh′
a(x)− xh′

b(x) =
∞∑
n=1

(
anxI

′(anx)

I(anx)
− bnxI

′(bnx)

I(bnx)

)

=
N∑

n=1

(
anxI

′(anx)

I(anx)
− bnxI

′(bnx)

I(bnx)

)
+
∑
n>N

bnxI
′(bnx)

I(bnx)

(
an
bn

· I
′(anx)

I ′(bnx)
· I(bnx)
I(anx)

− 1

)

≤
N∑

n=1

(
anxI

′(anx)

I(anx)
− bnxI

′(bnx)

I(bnx)

)
+
∑
n>N

bnxI
′(bnx)

I(bnx)
log

(
an
bn

· I
′(anx)

I ′(bnx)
· I(bnx)
I(anx)

)
.

In light of (3) it is easy to see the finite sum vanishes as x → ∞. To see that the tail

sum vanishes let us denote

c̄n =
an
bn

· I
′(anx)

I ′(bnx)
· I(bnx)
I(anx)

.

First, by Lemma 6, the infinite product
∏

n>N c̄n converges to 1 uniformly as N → ∞.

Thus,
∑

n>N log c̄n converges to 0 uniformly as N → ∞. Second, note that by assumption

the quantity

bnxI
′(bnx)

I(bnx)
= C0(bnx)

is of bounded variation on [0,∞). Applying Lemma 5 with dn = bnx and cn = log(c̄n)

we obtain ∑
n>N

bnxI
′(bnx)

I(bnx)

(
an
bn

· I
′(anx)

I ′(bnx)
· I(bnx)
I(anx)

− 1

)
→ 0

uniformly as N → ∞. This implies that lim supx→∞[xh′
a(x)−xh′

b(x)] ≤ 0. By exchanging

h′
a and h′

b, the same argument also gives lim supx→∞[xh′
b(x)−xh′

a(x)] ≤ 0. Thus, xh′
a(x)−

xh′
b(x) → 0 as x → ∞.

The proof of x2h′′
a(x)− x2h′′

b (x) → 0 is similar.
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Lemma 8. If y = y(x) is chosen to satisfy h′
a(x) = h′

b(y) then as x → ∞ we have

1. x ∼ y;

2. [xh′
a(x)− ha(x)]− [yh′

b(y)− hb(y)] → −α log
∞∏
n=1

an
bn

;

3. h′′
a(x) ∼ h′′

b (y) as x → ∞

where α is given by (3).

Proof. To see that x ∼ y we notice from the last lemma

xh′
b(y)− xh′

b(x) = xh′
a(x)− xh′

b(x) → 0 (9)

as x → ∞. Moreover, by the Mean Value Theorem h′
b(x)−h′

b(y) = (x−y)h′′
b (ξ), we have

xh′
b(x)− xh′

b(y) =
∞∑
n=1

(
bnxI

′(bnx)

I(bnx)
− bnxI

′(bny)

I(bny)

)
=

∞∑
n=1

bnx · bn(x− y)

(
I ′(s)

I(s)

)′

|s=bnξ

=
(
1− y

x

) ∞∑
n=1

(bnx)
2 · I

′′(bnξ)I(bnξ)− [I ′(bnξ)]
2

I2(bnξ)
. (10)

Since

I ′′(s)I(s)− [I ′(s)]2

I2(s)
= f ′′(s) > 0 for all s > 0,

|xh′
b(y)− xh′

b(x)| ≥
∣∣∣1− y

x

∣∣∣ · (b1x)2f ′′(b1ξ).

Combining this with (9) and the fact that s2f ′′(s) → −α > 0 as s → ∞, we have y ∼ x

as x → ∞.

From Lemma 7 and (9) it is enough to prove

∆ := [xh′
b(x)− hb(x)]− [yh′

b(y)− hb(y)] → 0 as x → ∞. (11)
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By the Mean Value Theorem,

|∆| = |(x− y) θ h′′
b (θ)|

= |x− y| θ
∞∑
n=1

b2n
I ′′(bnθ)I(bnθ)− [I ′(bnθ)]

2

I2(bnθ)
.

Lemma 4 and the assumption of bounded variation (Condition 2) guarantee the existence

of a constant M > 0 such that by the triangle inequality

I(bnξ)

I(bnθ)
≤
(
1 +M

∣∣∣∣ξθ − 1

∣∣∣∣) . (12)

Assume for now that there exists 0 < ε < 1, such that for all |ξ/θ − 1| < ε

I ′′(bnθ)I(bnθ)− [I ′(bnθ)]
2

I ′′(bnξ)I(bnξ)− [I ′(bnξ)]2
≤
(
1 +K

∣∣∣∣ξθ − 1

∣∣∣∣) (13)

for some constant K. Then, since ξ ∼ θ, we eventually obtain

|∆| ≤
∣∣∣1− y

x

∣∣∣ ∞∑
n=1

b2nx
2 I

′′(bnξ)I(bnξ)− [I ′(bnξ)]
2

I2(bnξ)
· θ
x

[
1 +K

∣∣∣∣ξθ − 1

∣∣∣∣] [1 +M

∣∣∣∣ξθ − 1

∣∣∣∣]2
= |xh′

b(y)− xh′
b(x)| ·

θ

x

[
1 +K

∣∣∣∣ξθ − 1

∣∣∣∣] [1 +M

∣∣∣∣ξθ − 1

∣∣∣∣]2 → 0,

where in the last equality we used (10). Thus, we have shown (11).

To see (13) observe

ϕ(z) := I ′′(z)I(z)− [I ′(z)]2 =

∫ ∞

0

∫ ∞

0

(t− s)2e−z(t+s)dF (t)dF (s).

Clearly

ϕ(j)(z) = (−1)j
∫ ∞

0

∫ ∞

0

(t+ s)j(t− s)2e−z(t+s)dF (t)dF (s)

and a similar argument as in Lemma 4 gives us

ϕ(bnξ)

ϕ(bnθ)
≥ 1 +

bnθϕ
′(bnθ)

ϕ(bnθ)

(
ξ

θ
− 1

)
,

for all |ξ/θ−1| < 1. Thus, in order to prove (13) it is enough to see that bnθϕ
′(bnθ)/ϕ(bnθ)

is bounded. We will do more and prove that the function zϕ′(z)/ϕ(z) is of bounded

variation.
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Notice that

zϕ′(z)

ϕ(z)
=

z I′′′(z)
I′′(z)

− z I′(z)
I(z)

1− I′(z)
I′′(z)

· I′(z)
I(z)

. (14)

By assumption both the numerator and denominator of the right-hand-side of (14)

are of bounded variation. To prove that zϕ′(z)/ϕ(z) is of bounded variation it is enough

to show that the denominator above is bounded away from 0. However, for all z > 0 we

have

0 <
I ′(z)

I ′′(z)
· I

′(z)

I(z)
< 1.

Moreover,

lim
z→∞

I ′(z)

I ′′(z)
· I

′(z)

I(z)
=

α

α− 1
< 1 and lim

z→0+

I ′(z)

I ′′(z)
· I

′(z)

I(z)
=

(EX)2

E(X2)
,

where X is a random variable having distribution F . If both of the expectations are ∞

the limit can be shown to be 0. Thus, the denominator of the right-hand-side of (14) is

bounded away from 0, and zϕ′(z)/ϕ(z) is of bounded variation.

To see h′′
a(x) ∼ h′′

b (y) as x → ∞ recall |x2h′′
a(x)| → ∞ as x → ∞ and, Lemma 7

implies h′′
a(x) ∼ h′′

b (x). Therefore, it is enough to show h′′
b (x) ∼ h′′

b (y). However, by

replacing θ and ξ with x and y, respectively, in both (12) and (13) we obtain

f ′′(bnx)

f ′′(bny)
≤
(
1 +K

∣∣∣y
x
− 1
∣∣∣) (1 +M

∣∣∣y
x
− 1
∣∣∣)2

and consequently

h′′
b (x)

h′′
b (y)

=

∑∞
n=1 b

2
nf

′′(bnx)∑∞
n=1 b

2
nf

′′(bny)
≤
(
1 +K

∣∣∣y
x
− 1
∣∣∣) (1 +M

∣∣∣y
x
− 1
∣∣∣)2 .

Thus, lim supx,y→0 h
′′
b (x)/h

′′
b (y) ≤ 1 and h′′

b (x) ∼ h′′
b (y) follows by reversing the roles of x

and y.

Proof of Theorem 4. This is just a consequence of Theorem 1 and the last two lemmas.
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5 Proof of Corollary 1

Proof of Corollary 1. We will prove that if ξi = |Zi|p, p > 0, where Zi are independent

standard Gaussian variables, then sI(j+1)(s)/I(j)(s), j = 0, 1, 2, is bounded and decreas-

ing.

Let gj(s) = s−p/2I(j+1)(s−p/2)/I(j)(s−p/2), 0 ≤ s < ∞. Since s−p/2 is a monotone

function, sI(j+1)(s)/I(j)(s) is of bounded monotone if gj(s) is of bounded monotone.

Thus it suffices to prove that gj(s) is a bounded increasing function. We show g′j(s) > 0.

By making the change of variable u = s−1/2t, we have

gj(s) = −
∫∞
0
[s−1/2t]jp+pe−s−p/2tpe−t2/2dt∫∞

0
[s−1/2t]jpe−s−p/2tpe−t2/2dt

= −
∫∞
0

ujp+pe−up
e−su2/2du∫∞

0
ujpe−upe−su2/2du

. (15)

A direct calculation gives

g′j(s) =

∫∞
0

∫∞
0
(ujp+p − tjp+p)(ujp+2 − tjp+2)e−up−su2/2e−tp−st2/2dudt

4
[∫∞

0
ujpe−up−su2/2du

]2 > 0.

To prove that gj is bounded, use (15) and the bounded convergence theorem to obtain

lim
s→0+

gj(s) = −
∫∞
0

ujp+pe−up
du∫∞

0
ujpe−updu

= −Γ(j + 1 + 1/p)

Γ(j + 1/p)
= −(j + 1/p).

Together with monotonicity, we obtain |gj(s)| ≤ j + 1/p.

Finally, α = −1/p follows from the observation that

α = lim
s→∞

sf ′(s) = lim
s→∞

g0(s
−2/p) = −1/p.

Therefore, Corollary 1 follows from Theorem 4 with α = −1/p.

Remark 2. The same proof will work for any ξi = Xp
i , where {Xi} is a sequence of

independent non-negative random variables having a density F ′(x) that is continuously

differentiable, non-increasing, and −∞ < F ′′(0) < 0.
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Remark 3. If we assume the cumulative distribution function F satisfies both conditions 1

and 2, then F (1/x) = xαl(x) where α < 0 is the index of variation and l(x) is a slowly

varying function. On the other hand, if F (1/x) = xαl(x) and l(x) = c + dxρ + o(xρ) as

x → ∞, where c > 0, d ̸= 0 and ρ < 0, then conditions 1 and 2 hold (cf. [5] page 73).

Now, if we suppose F (1/x) = xα(c + dxρ + o(xρ)) as x → ∞ then we can actually

verify that sI(j+1)(s)/I(j)(s) is of bounded variation on [0,∞) for any j such that Eξj+1 =∫∞
0

xj+1dF (x) < ∞. Indeed,

I(j)(s) = (−1)j
∫ ∞

0

xje−txdF (x).

Thus I(j+1)(s)/I(j)(s) = Ī ′(s)/Ī(s) where Ī(s) is the Laplace transform of a random

variable ξ̄, where ξ̄ has the distribution function

F̄ (x) =

∫ x

0
sj dF (s)

Eξj
.

An integration by parts gives

F̄ (1/x) =
1

Eξj

(
F (1/x)

xj
−
∫ 1/x

0

jsj−1F (s) ds

)
=

xα−j

Eξj

(
−αc

j − α
+

−(α + ρ)d

j − α− ρ
xρ + o(xρ)

)
so that sĪ ′(s)/Ī(s) is of bounded variation, and therefore sI(j+1)(s)/I(j)(s) is also.
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