METRIC ENTROPY OF CONVEX HULLS

BY

FUCHANG GAO

Department of Mathematics, University of Idaho Moscow, ID 83844-1103, USA e-mail: fuchang@uidaho.edu

ABSTRACT

Let T be a precompact subset of a Hilbert space. The metric entropy of the convex hull of T is estimated in terms of the metric entropy of T, when the latter is of order ε^{-2} . The estimate is best possible. Thus, it answers a question left open in [CKP].

0.1. Introduction

Let H be a separable Hilbert space and let T be a precompact subset of H. Define the covering number

$$N(T,\varepsilon) := \inf \left\{ n : \exists t_1, t_2, \dots, t_n \in T, \text{ s.t. } T \subset \bigcup_{k=1}^n B(t_k, \varepsilon) \right\}$$

where $B(x,\varepsilon)$ is the open ε -ball centered at $x \in H$. The set

$$N_{\varepsilon}(T) := \{t_1, t_2, \ldots, t_n\}$$

is called an ε -net of T. The quantity $\log N(T, \varepsilon)$ plays an important role in the theory of empirical processes (cf. [D]). It is called the metric entropy of T.

Let $\operatorname{cov}(T)$ denote the convex hull of T. It is natural to ask for good estimates of $\log N(\operatorname{cov}(T), \varepsilon)$ in terms of $\log N(T, \varepsilon)$. It is known (cf. [C]) that if $\log N(T, \varepsilon) < \varepsilon^{-\alpha}$ for some $\alpha > 0$ and all $0 < \varepsilon < 1/4$, then there exists c > 0, such that

$$\log N(\operatorname{cov}(T), arepsilon) \leq egin{cases} c \cdot arepsilon^{-2} (\log arepsilon^{-1})^{1-2/lpha} & ext{if } 0 < lpha < 2, \ c \cdot arepsilon^{-lpha} & ext{if } lpha > 2, \end{cases}$$

Received December 19, 1999

for all $0 < \varepsilon < 1/4$, and those are best possible. As we can see from the above, the situations are completely different for $\alpha < 2$ and $\alpha > 2$. The case $\alpha = 2$ was open. In [LL], Li and Linde studied the metric entropy of cov(T) via certain quantities that originated in the theory of majorizing measures. Among others, they obtained some finer estimates of $\log N(cov(T), \varepsilon)$, which lead to some important partial results for $\alpha = 2$, and a partial answer to a related problem raised in [BP].

In this paper, we give the best possible estimate for the case $\alpha = 2$. More precisely, we prove the following

THEOREM 1: Let H be a separable Hilbert space and let T be a precompact subset of H.

(i) Suppose $\log N(T, \varepsilon) < \varepsilon^{-2}$ for all $0 < \varepsilon < 1/4$; then for some c > 0,

$$\log N(\operatorname{cov}(T),\varepsilon) \le c \cdot \varepsilon^{-2} (\log \varepsilon^{-1})^2.$$

(ii) There exists a set T, and constants $c_1 > 0$, $c_2 > 0$ such that

$$\sup_{\varepsilon>0} \varepsilon^2 \log N(T,\varepsilon) \le 8,$$

and for all $\varepsilon < c_1$,

$$\log N(\operatorname{cov}(T),\varepsilon) \ge c_2 \varepsilon^{-2} (\log(\varepsilon^{-1}))^2.$$

0.2. Proof of (i)

Without loss of generality, we assume the diameter of T is 1. For $k \ge 1$, let N_k be a 2^{-k} -net of T with minimal cardinality. Denote $D_1 = N_1 \cup \{0\}$ and

 $D_n = \{z \in N_n - N_{n-1} : ||z|| \le 2^{-n+1}\} \cup \{0\}$

for n > 1. Then

$$T \subset D_1 + D_2 + \dots + D_n + \dots,$$

where "+" means the Minkowsky sum. By the assumption of (i), D_n consists of no more than $e^{c2^{2n}}$ vectors for some constant c > 0. Denote $C_n = \operatorname{cov}(D_n)$ and $E_n = C_1 + C_2 + \cdots + C_n$; then we have

$$\operatorname{cov}(T) \subset C_1 + C_2 + \dots + C_n + \dots = E_n + C_{n+1} + \dots$$

For any $0 < \varepsilon < 1/4$, suppose $2^{-n+2} \le \varepsilon < 2^{-n+3}$. Because $C_{n+1} + C_{n+2} + \cdots$ has diameter at most 2^{-n+1} , we have

$$\log N(\operatorname{cov}(T),\varepsilon) \le \log N(E_n, 2^{-n+1}).$$

Vol. 123, 2001

To estimate the right side above, we need the following lemma, whose proof is standard.

LEMMA 1: There exists a constant c, such that for any $0 < \lambda < 1/4$,

$$\log N(E_n,\lambda) \le cn^2 \cdot \lambda^{-2}$$

Proof: For each $k \leq n$, suppose $D_k = \{x_1, x_2, \ldots, x_{d_k}\}$, where d_k is the cardinality of D_k . Thus, $d_k \leq e^{c2^{2k}}$. For each $z_k \in C_k$, z_k can be expressed as

$$z_k = \sum_{i=1}^{d_k} a_i x_i, \quad a_i \ge 0, \quad \sum_{i=1}^{d_k} a_i \le 1.$$

Define random vector Z_k , so that

$$\Pr(Z_k = x_i) = a_i, \quad 1 \le i \le d_k, \text{ and } \Pr(Z_k = 0) = 1 - \sum_{i=1}^{d_k} a_i.$$

Let $Z_{k,1}, Z_{k,2}, \ldots, Z_{k,m_k}$ and $Z'_{k,1}, Z'_{k,2}, \ldots, Z'_{k,m_k}$ be independent copies of Z_k . Then

$$E\frac{1}{m_k}\sum_{i=1}^{m_k}Z_{k,i}=z_k.$$

Thus, by convexity and symmetrization, we have

$$\begin{split} E \left\| \sum_{k=1}^{n} z_{k} - \sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k,i} \right\| = E \left\| E' \sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z'_{k,i} - \sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k,i} \right\| \\ \leq EE' \left\| \sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} (Z'_{k,i} - Z_{k,i}) \right\| \\ = EE' \left\| \sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} (Z'_{k,i} - Z_{k,i}) r_{k,i}(t) \right\| \\ \leq 2E \left\| \sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k,i} r_{k,i}(t) \right\| \end{split}$$

where $(r_{k,i}(t))$, $1 \le k \le n$, $1 \le i \le m_k$, is a Rademacher sequence. Integrating with respect to t over [0, 1], and using Fubini, we obtain

$$E\left\|\sum_{k=1}^{n} z_{k} - \sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k,i}\right\| \leq 2E\left(\sum_{k=1}^{n} \frac{1}{m_{k}^{2}} \sum_{i=1}^{m_{k}} \|Z_{k,i}\|^{2}\right)^{1/2}$$
$$\leq 2\left(\sum_{k=1}^{n} \frac{1}{m_{k}} 2^{-2k+2}\right)^{1/2} = \lambda,$$

taking $m_k = 4n2^{-2k+2}\lambda^{-2}$. This in particular implies that for some realization,

$$\left\|\sum_{k=1}^n z_k - \sum_{k=1}^n \frac{1}{m_k} \sum_{i=1}^{m_k} Z_{k,i}\right\| \leq \lambda.$$

But, there is no more than

$$\prod_{k=1}^n (d_k)^{m_k} \le e^{cn^2\lambda^{-2}}$$

possible realizations of $\sum_{k=1}^{n} \sum_{i=1}^{m_k} Z_{k,i}/m_k$. The lemma follows.

Applying Lemma 1 with $\lambda = 2^{-n+1}$, and keeping in mind that $2^{-n+2} \leq \varepsilon < 2^{-n+3}$, we obtain

$$\log N(\operatorname{cov}(T), \varepsilon) \le \log N(E_n, 2^{-n+1})$$
$$\le c \cdot n^2 2^{-2n+2}$$
$$= c' \varepsilon^{-2} (\log \varepsilon^{-1})^2.$$

Remark 1: Both Li and Linde pointed out to me that (i) can be derived from a result in [CKP]. We include the proof because the current proof seems more transparent, and holds for any Banach space of type 2. Also, it is more convenient to the readers.

0.3. Proof of (ii)

Let (\mathbf{e}_k) be a standard basis of H. For each integer $k \geq 1$, we define

$$D_{k} = \{2^{-k} \mathbf{e}_{i} : e^{2^{2k-2}} \le i \le e^{2^{2k}}\} \cup \{0\},\$$

and $T = D_1 + D_2 + \cdots + D_k + \cdots$. For any $0 < \varepsilon < 1$, suppose $2^{-n} \le \varepsilon < 2^{-n+1}$. Define $S_n = D_1 + D_2 + \cdots + D_n$. Because S_n is an 2^{-n} -net of T, and S_n has cardinality no more than

$$\prod_{k\leq n} e^{2^{2k}} \leq e^{2^{2n+1}}.$$

we have $\log N(T,\varepsilon) < 2^{2n+1}$. Thus

$$\varepsilon^2 \log N(T,\varepsilon) < 2^{-2n+2} \cdot 2^{2n+1} = 8.$$

To obtain a lower bound for $\log N(\operatorname{cov}(T), \varepsilon)$, we need the following two lemmas.

Vol. 123, 2001

LEMMA 2: There exists c > 0, such that for $e^{-2^{2k-3}} < \delta < c \cdot 2^{-k}$,

 $\log N(\operatorname{cov}(D_k), \delta) > c \cdot \delta^{-2}.$

Proof: Denote $I_k = \{i : e^{2^{2k-2}} \le i < e^{2^{2k}}\}$, and let $|I_k|$ be the cardinality of I_k . Consider the set

$$A = \bigg\{ \sum_{i \in I_k} a_i \varepsilon \mathbf{e}_i : a_i \text{ is non-negative integer}, \sum_{i \in I_k} a_i \le 2^{-k} / \varepsilon \bigg\}.$$

Let *m* be the largest integer, such that $m \leq 2^{-k}/\varepsilon$. Then *A* has cardinality no less than $|I_k|^m/m! > |I_k|^{m/2}$. For each $t \in A$, and $2 \leq l < m$, consider

$$B(t,l) = \{s \in A : \|t-s\|_1 \le l\varepsilon\}.$$

B(t,l) contains no more than $2^{l}|I_{k}|^{l} \leq |I_{k}|^{2l}$ elements. Thus A contains a subset U of cardinality more than $(|I_{k}|^{m/2}) \div (|I_{k}|^{2l})$, whose mutual l_{1} -distance between any two elements is at least $l\varepsilon$. Thus, the mutual l_{2} -distance is at least $\sqrt{l\varepsilon}$. Let $l \approx m/6$. Because $A \subset \operatorname{cov}(D_{k})$, we have

$$\begin{split} \log N(\operatorname{cov}(D_k),\sqrt{l\varepsilon}) &\approx \log N(\operatorname{co}(D_k),\sqrt{m/6}\cdot\varepsilon) \\ &\geq \log \left(|I_k|^{m/2}/|I_k|^{m/3}\right) \\ &\geq \frac{m}{6} \log |I_k|, \end{split}$$

which implies that $\log N(\operatorname{cov}(D_k), \delta) \ge c \cdot \delta^{-2}$ for some c > 0 and $e^{-2^{2k-3}} < \delta < c \cdot 2^{-k}$.

LEMMA 3: For $n \ge 12$, let $m = \lfloor n/6 \rfloor$, and

$$E_n = \operatorname{cov}(D_m) + \operatorname{cov}(D_{m+1}) + \operatorname{cov}(D_{m+2}) + \cdots + \operatorname{cov}(D_n).$$

Then for some constant c > 0,

$$\log N(E_n, \sqrt{n} \cdot 2^{-2n-1}) \ge cn \cdot 2^{4n}.$$

Proof: By Lemma 2, for each $m \leq k \leq n$, there exists a a set $S_k \subset \text{cov}(D_k)$ of cardinality $L = e^{c \cdot 2^{4n}}$ whose mutual distance between any two elements is at least 2^{-2n} . Consider the set

$$F_n = S_m + S_{m+1} + \dots + S_n.$$

For $t, s \in F_n$, suppose

$$t = t_m + t_{m+1} + \dots + t_n$$
 and $s = s_m + s_{m+1} + \dots + s_n$

Isr. J. Math.

with $t_k \in S_k$ and $s_k \in S_k$. Define the Hamming distance

$$h(t,s) =$$
cardinality of $\{k : t_k \neq s_k, m \leq k \leq n\}$.

For each $t \in F_n$, the ball

$$B_h(t, n/3) := \{s \in F_n : h(t, s) \le n/3\}$$

contains no more than $(nL)^{n/4} < L^{n/3}$ elements. Thus F_n contains a subset of cardinality $L^{n-m} \div L^{n/3} \ge L^{n/2}$, whose mutual Hamming distance between any two elements is at least n/4. Thus the mutual l_2 -distance is at least $\sqrt{n} \cdot 2^{-2n-1}$. This implies that

$$\log N(F_n, \sqrt{n} \cdot 2^{-2n-1}) \ge \frac{n}{2} \log L = \frac{cn}{2} 2^{4n}.$$

Now we finish the proof of (ii). For any $0 < \varepsilon < 2^{-24}$, there exists $n \ge 12$, such that

$$\sqrt{n+1}\cdot 2^{-2n-3}<\varepsilon\leq \sqrt{n}\cdot 2^{-2n-1}.$$

Because $F_n \subset \operatorname{cov}(T)$, we have

$$\log N(\operatorname{cov}(T), \varepsilon) \ge \log N(F_n, \sqrt{n} \cdot 2^{-2n-1})$$
$$\ge \frac{cn}{2} 2^{4n}$$
$$> c' \varepsilon^2 (\log \varepsilon^{-1})^{-2}.$$

ACKNOWLEDGEMENT: The author thanks J. Creutzig, W. Li and W. Linde for their interest and valuable comments.

References

- [BP] K. Ball and A. Pajor, The entropy of convex bodies with "few" extreme points, London Mathematical Society Lecture Note Series 158 (1990), 25–32.
- [C] B. Carl, Metric entropy of convex hulls in Hilbert spaces, The Bulletin of the London Mathematical Society 29 (1997), 452–458.
- [CKP] B. Carl, I. Kyrezi and A. Pajor, Metric entropy of convex hulls in Banach spaces, Journal of the London Mathematical Society (2) 60 (1999), 871–896.
- [D] R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, Journal of Functional Analysis 1 (1967), 290–330.
- [LL] W. Li and W. Linde, Metric entropy of convex hulls in Hilbert spaces, Studia Mathematica 139 (2000), 29–45.