Exact value of the n-term approximation of a diagonal operator

Fuchang Gao*
Department of Mathematics, University of Idaho, United States

Received 24 March 2009; received in revised form 25 April 2009; accepted 8 July 2009
Available online 14 July 2009
Communicated by Allan Pinkus

Abstract

This paper determines the exact value of the n-term approximation of a diagonal linear operator from l_{p}^{M} to $l_{q}^{M}, 0<p, q \leq \infty$ using an elementary method. (C) 2009 Elsevier Inc. All rights reserved.

Keywords: n-term approximation; Diagonal operator

1. Introduction

Let $T:\left(x_{1}, x_{2}, \ldots, x_{M}\right) \mapsto\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots, \lambda_{M} x_{M}\right)$ be a diagonal linear operator from l_{p}^{M} to $l_{q}^{M}, 0<p, q \leq \infty$. Following Stechkin [4], for $1 \leq n \leq M$, we define the n-term approximation of T as the quantity

$$
\sigma_{n}(T)= \begin{cases}\sup _{f \in B_{p}} \inf _{\Gamma_{n}}\left(\sum_{i \notin \Gamma_{n}}\left|\lambda_{i} f_{i}\right|^{q}\right)^{1 / q}, & q<\infty \\ \sup _{f \in B_{p}} \inf _{\Gamma_{n}} \sup _{i \notin \Gamma_{n}}\left|\lambda_{i} f_{i}\right|, & q=\infty\end{cases}
$$

[^0]0021-9045/\$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2009.07.004
where B_{p} is the unit ball of l_{p}^{M}, and Γ_{n} is an arbitrary subset of $\{1,2, \ldots, M\}$ with n elements. Clearly, to determine the n-term approximation of a diagonal linear operator, we can assume that the λ_{i} are non-negative and non-increasing. Indeed, we do make this assumption for the rest of the paper.

We are interested in finding the exact value of $\sigma_{n}(T)$ for all $0<p, q \leq \infty$. When $0<p \leq q<\infty$, Stepanets [5] proved that

$$
\sigma_{n}(T)=\max _{n<m \leq M} \frac{(m-n)^{1 / q}}{\left(\sum_{i=1}^{m} \lambda_{i}^{-p}\right)^{1 / p}}
$$

Fang and Qian [1] gave a different proof for the case $p=q$ based on Ky Fan's minimax theorem [3]. It is therefore a natural question to ask what the exact value of $\sigma_{n}(T)$ is when $p>q$. Indeed, Fang and Qian [2] proved that when T is the identity operator from l_{p}^{M} to l_{q}^{M}, $\sigma_{n}(T)=(M-n)^{1 / q} M^{-1 / p}$ for $0<q<p<\infty$, and made the following conjecture:

Conjecture 1 (Fang and Qian [2]). For the diagonal operator $T: l_{p}^{M} \mapsto l_{q}^{M}, T\left(x_{1}, x_{2}, \ldots\right.$, $\left.x_{M}\right)=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots, \lambda_{M} x_{M}\right), 0<q<p<\infty$,

$$
\sigma_{n}(T)=M^{1 / q-1 / p} \max _{n<m \leq M}\left(\frac{m-n}{\sum_{i=1}^{m} \lambda_{i}^{-q}}\right)^{1 / q} .
$$

The goal of this paper is to answer this question by proving
Theorem 2. Let $T:\left(x_{1}, x_{2}, \ldots, x_{M}\right) \mapsto\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots, \lambda_{M} x_{M}\right)$ be a diagonal linear operator from l_{p}^{M} to l_{q}^{M}, with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{M}>0$. For $1 \leq n<M$,

$$
\sigma_{n}(T)= \begin{cases}\max _{n<m \leq M} \frac{(m-n)^{1 / q}}{\left(\sum_{i=1}^{m} \lambda_{i}^{-p}\right)^{1 / p}}, & 0<p \leq q<\infty \\ \frac{1}{\left(\sum_{i=1}^{n+1} \lambda_{i}^{-p}\right)^{1 / p},} & 0<p<q=\infty \\ \lambda_{n+1}, & p=q=\infty \\ \left(\frac{\left(m_{0}-n\right)^{p /(p-q)}}{\left(\sum_{i=1}^{m_{0}} \lambda_{i}^{-p}\right)^{q /(p-q)}}+\sum_{i=m_{0}+1}^{M} \lambda_{i}^{p q /(p-q)}\right)^{\frac{1}{q}-\frac{1}{p}}, & 0<q<p<\infty \\ \left(\sum_{i=n+1}^{M} \lambda_{i}^{q}\right)^{1 / q}, & 0<q<p=\infty\end{cases}
$$

where m_{0} is the largest integer m such that $n<m \leq M$ and

$$
(m-n) \lambda_{m}^{-p} \leq \sum_{j=1}^{m} \lambda_{j}^{-p}
$$

From Theorem 2 it is clear that Conjecture 1 is not valid.
Remark 3. The result for the case $0<p \leq q \leq \infty$ is due to Stepanets [5]. However, the proof given in this paper is much simpler. When $p=q<\infty$, we have

$$
\sigma_{n}(T)=\max _{n<m \leq M} \frac{(m-n)^{1 / p}}{\left(\sum_{i=1}^{m} \lambda_{i}^{-p}\right)^{1 / p}}
$$

On the other hand, by taking the limit $q \rightarrow p^{-}$for the case $0<q<p<\infty$, we can also obtain the exact value of $\sigma_{n}(T)$ for the case $p=q<\infty$, that is

$$
\begin{aligned}
\sigma_{n}(T) & =\lim _{q \rightarrow p^{-}}\left(\frac{\left(m_{0}-n\right)^{p /(p-q)}}{\left(\sum_{i=1}^{m_{0}} \lambda_{i}^{-p}\right)^{q /(p-q)}}+\sum_{i=m_{0}+1}^{M} \lambda_{i}^{p q /(p-q)}\right)^{\frac{1}{q}-\frac{1}{p}} \\
& =\max \left\{\frac{\left(m_{0}-n\right)^{1 / p}}{\left(\sum_{i=1}^{m_{0}} \lambda_{i}^{-p}\right)^{1 / p}}, \lambda_{m_{0}+1}, \lambda_{m_{0}+2}, \ldots, \lambda_{M}\right\} \\
& =\frac{\left(m_{0}-n\right)^{1 / p}}{\left(\sum_{i=1}^{m_{0}} \lambda_{i}^{-p}\right)^{1 / p}}
\end{aligned}
$$

where the last equality follows from the definition of m_{0}. This last expression is more explicit.

2. Proof

1. Case $0<p \leq q<\infty$

We assume $p<q$ because the subcase $p=q$ can be handled by taking the limit $q \rightarrow p^{+}$. Because the supremum can be attained, there exists an f with $\sum_{i=1}^{M}\left|f_{i}\right|^{p}=1$ such that

$$
\begin{equation*}
\sigma_{n}(T)^{q}=\sum_{i=1}^{M-n}\left|f_{\pi(i)} \lambda_{\pi(i)}\right|^{q}, \tag{1}
\end{equation*}
$$

where $\left\{\left|f_{\pi(i)} \lambda_{\pi(i)}\right|\right\}$ is a non-decreasing arrangement of $\left\{\left|f_{i} \lambda_{i}\right|\right\}$.
First, we claim that for all $M-n<i \leq M$,

$$
\begin{equation*}
\left|f_{\pi(i)} \lambda_{\pi(i)}\right|=\left|f_{\pi(M-n)} \lambda_{\pi(M-n)}\right| . \tag{2}
\end{equation*}
$$

Indeed, because $\left\{\left|f_{\pi(i)} \lambda_{\pi(i)}\right|\right\}$ is a non-decreasing arrangement of $\left\{\left|f_{i} \lambda_{i}\right|\right\}$, we have

$$
\left|f_{\pi(i)} \lambda_{\pi(i)}\right| \geq\left|f_{\pi(M-n)} \lambda_{\pi(M-n)}\right| \quad \text { for all } M-n<i \leq M .
$$

Suppose for some $M-n<i_{0} \leq M$

$$
\left|f_{\pi(M-n)} \lambda_{\pi(M-n)}\right|=\left|f_{\pi(M-n+1)} \lambda_{\pi(M-n+1)}\right|=\cdots=\left|f_{\pi\left(i_{0}-1\right)} \lambda_{\pi\left(i_{0}-1\right)}\right|<\left|f_{\pi\left(i_{0}\right)} \lambda_{\pi\left(i_{0}\right)}\right| .
$$

Denote $\alpha=\left(\sum_{i \neq i_{0}}\left|f_{\pi(i)}\right|^{p}+\left|f_{\pi\left(i_{0}-1\right)}\right|^{p} \lambda_{\pi\left(i_{0}-1\right)}^{p} \lambda_{\pi\left(i_{0}\right)}^{-p}\right)^{-1 / p}$. Because

$$
\sum_{i \neq i_{0}}\left|f_{\pi(i)}\right|^{p}+\left|f_{\pi\left(i_{0}-1\right)}\right|^{p} \lambda_{\pi\left(i_{0}-1\right)}^{p} \lambda_{\pi\left(i_{0}\right)}^{-p}<\sum_{i=1}^{M}\left|f_{\pi(i)}\right|^{p}=1
$$

we have $\alpha>1$. Define g such that

$$
g_{\pi(i)}= \begin{cases}\alpha\left|f_{\pi(i)}\right|, & i \neq i_{0} \\ \alpha\left|f_{\pi\left(i_{0}-1\right)}\right| \lambda_{\pi\left(i_{0}-1\right)} \lambda_{\pi\left(i_{0}\right)}^{-1}, & i=i_{0}\end{cases}
$$

Clearly, $\|g\|_{p}=\|f\|_{p}=1$. Now, for this $g,\left\{g_{\pi(i)} \lambda_{\pi(i)}\right\}$ is a non-decreasing rearrangement of $\left\{g_{i} \lambda_{i}\right\}$. Thus,

$$
\inf _{\Gamma_{n}} \sum_{i \notin \Gamma_{n}}\left|\lambda_{i} g_{i}\right|^{q}=\sum_{i=1}^{M-n}\left|g_{\pi(i)} \lambda_{\pi(i)}\right|^{q} .
$$

Because $g_{\pi(i)}=\alpha\left|f_{\pi(i)}\right|$ for all $1 \leq i \leq M-n<i_{0}$, we have

$$
\inf _{\Gamma_{n}} \sum_{i \notin \Gamma_{n}}\left|\lambda_{i} g_{i}\right|^{q}=\alpha^{q} \sum_{i=1}^{M-n}\left|f_{\pi(i)} \lambda_{\pi(i)}\right|^{q}=\alpha^{q} \sigma_{n}(T)^{q} .
$$

This is impossible because $\alpha>1$. Thus, for all $M-n<i \leq M$, (2) holds.
Next, we claim that for all $1 \leq i<M-n$, either $f_{\pi(i)}=0$, or (2) holds. Suppose that for some $1 \leq j_{0}<M-n$, we have

$$
\begin{equation*}
0<\left|f_{\pi\left(j_{0}\right)} \lambda_{\pi\left(j_{0}\right)}\right|<\left|f_{\pi\left(j_{0}+1\right)} \lambda_{\pi\left(j_{0}+1\right)}\right|=\cdots=\left|f_{\pi(M)} \lambda_{\pi(M)}\right| . \tag{3}
\end{equation*}
$$

Consider the strictly convex function

$$
F\left(x_{1}, x_{2}, \ldots x_{M-n}\right):=\sum_{i=1}^{M-n} x_{i}^{q / p} \lambda_{\pi(i)}^{q} .
$$

On the convex domain

$$
\begin{aligned}
& \left\{\left(x_{1}, x_{2}, \ldots, x_{M-n}\right) \in \mathbb{R}^{M-n}: \sum_{i=1}^{M-n} x_{i} \leq 1-\sum_{i=M-n+1}^{M}\left|f_{\pi(i)}\right|^{p},\right. \\
& \left.0 \leq x_{i} \leq\left(\left|f_{\pi(M-n)}\right| \lambda_{\pi(M-n)} \lambda_{\pi(i)}^{-1}\right)^{p}\right\},
\end{aligned}
$$

F attains its maximum only at an extreme point. Because by the assumption (3), the point

$$
\left(\left|f_{\pi(1)}\right|^{p},\left|f_{\pi(2)}\right|^{p}, \ldots,\left|f_{\pi(M-n)}\right|^{p}\right)
$$

is inside the above convex set, but not an extreme point thereof, there exists an extreme point $\left(g_{\pi(1)}^{p}, g_{\pi(2)}^{p}, \ldots, g_{\pi(M-n)}^{p}\right)$ with either $g_{\pi(i)}=0$ or

$$
g_{\pi(i)} \lambda_{\pi(i)}=\left|f_{\pi(M-n)}\right| \lambda_{\pi(M-n)},
$$

such that

$$
F\left(\left|f_{\pi(1)}\right|^{p},\left|f_{\pi(2)}\right|^{p}, \ldots,\left|f_{\pi(M-n)}\right|^{p}\right)<F\left(g_{\pi(1)}^{p}, g_{\pi(2)}^{p}, \ldots, g_{\pi(M-n)}^{p}\right)
$$

By defining $g_{\pi(i)}=\left|f_{\pi(i)}\right|$ for $M-n<i \leq M$, we have $\|g\|_{p} \leq 1$ and

$$
\begin{aligned}
\inf _{\Gamma_{n}} \sum_{i \notin \Gamma_{n}}\left|\lambda_{i} g_{i}\right|^{q} & =\sum_{i=1}^{M-n}\left|g_{\pi(i)} \lambda_{\pi(i)}\right|^{q}=F\left(g_{\pi(1)}^{p}, g_{\pi(2)}^{p}, \ldots, g_{\pi(M-n)}^{p}\right) \\
& >F\left(\left|f_{\pi(1)}\right|^{p},\left|f_{\pi(2)}\right|^{p}, \ldots,\left|f_{\pi(M-n)}\right|^{p}\right)=\sigma_{n}(T)^{q}
\end{aligned}
$$

which is impossible. Hence, either $f_{\pi(i)}=0$ or $\left|f_{\pi(i)} \lambda_{\pi(i)}\right|=\left|f_{\pi(M-n)} \lambda_{\pi(M-n)}\right|$.
Therefore, we have a constant $c>0$ and an index set $I \subset\{1,2, \ldots, M\}$ such that $\left|f_{i}\right|=c \lambda_{i}^{-1}$ for $i \in I$ and $f_{i}=0$ for $i \notin I$. Together with $\sum_{i=1}^{M}\left|f_{i}\right|^{p}=1$, we have

$$
\left|f_{i}\right|= \begin{cases}\lambda_{i}^{-1}\left(\sum_{i \in I} \lambda_{i}^{-p}\right)^{-1 / p}, & i \in I \\ 0, & i \notin I\end{cases}
$$

For this f we have

$$
\sum_{i=1}^{M-n}\left|f_{\pi(i)} \lambda_{\pi(i)}\right|^{q}=\frac{|I|-n}{\left(\sum_{i \in I} \lambda_{i}^{-p}\right)^{q / p}}
$$

Because the λ_{i} are positive and non-increasing, the optimal value is attained if I is of the form $I=\{1,2, \ldots, m\}$ for some $m>n$. Hence

$$
\sigma_{n}(T)^{q}=\sup _{m>n} \frac{m-n}{\left(\sum_{i=1}^{m} \lambda_{i}^{-p}\right)^{q / p}}
$$

as desired.
2. Case $q<p<\infty$

It is possible to use the same approach as in the previous case. However, the following proof is even simpler. In fact, the only trick is the simple fact that

$$
\begin{aligned}
& \inf \left\{\sum_{i=1}^{M} a_{i} \delta_{i}: \delta_{i} \in\{0,1\}: \sum_{i=1}^{M} \delta_{i}=M-n\right\} \\
& \quad=\inf \left\{\sum_{i=1}^{M} a_{i} \eta_{i}: \eta_{i} \in[0,1], \sum_{i=1}^{M} \eta_{i}=M-n\right\}
\end{aligned}
$$

which is true because a linear function on a convex domain attains its extreme value at an extreme point. Using this simple fact, we have

$$
\begin{aligned}
\sigma_{n}(T)^{q} & =\sup _{f \in B_{p}} \inf \left\{\sum_{i=1}^{M}\left|f_{i}\right|^{q} \lambda_{i}^{q} \delta_{i}: \delta_{i} \in\{0,1\}, \sum_{i=1}^{M} \delta_{i}=M-n\right\} \\
& =\sup _{f \in B_{p}} \inf \left\{\sum_{i=1}^{M}\left|f_{i}\right|^{q} \lambda_{i}^{q} \eta_{i}: \eta_{i} \in[0,1], \sum_{i=1}^{M} \eta_{i}=M-n\right\} .
\end{aligned}
$$

Applying Hölder's inequality gives

$$
\begin{align*}
\sigma(T)^{q} & =\sup _{f \in B_{p}} \inf \left\{\sum_{i=1}^{M}\left|f_{i}\right|^{q} \lambda_{i}^{q} \eta_{i}: \eta_{i} \in[0,1], \sum_{i=1}^{M} \eta_{i}=M-n\right\} \\
& \leq \inf \left\{\left(\sum_{i=1}^{M} \lambda_{i}^{p q /(p-q)} \eta_{i}^{p /(p-q)}\right)^{(p-q) / p}: \sum_{i=1}^{M} \eta_{i}=M-n ; 0 \leq \eta_{i} \leq 1\right\} . \tag{4}
\end{align*}
$$

We define η_{i} such that

$$
\eta_{i}= \begin{cases}\frac{\left(m_{0}-n\right) \lambda_{i}^{-p}}{\sum_{j=1}^{m_{0}} \lambda_{j}^{-p}}, & 1 \leq i \leq m_{0} \tag{5}\\ 1, & m_{0}<i \leq M\end{cases}
$$

where m_{0} is defined in the statement of the theorem. Clearly, $\eta_{i} \in[0,1]$ for all $1 \leq i \leq M$. By choosing η_{i} as defined in (5), we have from (4) that

$$
\sigma_{n}(T)^{q} \leq\left[\frac{\left(m_{0}-n\right)^{p /(p-q)}}{\left(\sum_{i=1}^{m_{0}} \lambda_{i}^{-p}\right)^{q /(p-q)}}+\sum_{i=m_{0}+1}^{M} \lambda_{i}^{p q /(p-q)}\right]^{(p-q) / p} .
$$

To prove the other direction, we choose

$$
f_{i}= \begin{cases}L^{-1 / p} K^{1 /(p-q)} \lambda_{i}^{-1}, & 1 \leq i \leq m_{0} \tag{6}\\ L^{-1 / p} \lambda_{i}^{q /(p-q)}, & m_{0}+1 \leq i \leq M\end{cases}
$$

where

$$
K=\left(m_{0}-n\right)\left(\sum_{i=1}^{m_{0}} \lambda_{i}^{-p}\right)^{-1} \quad \text { and } \quad L=\frac{\left(m_{0}-n\right)^{p /(p-q)}}{\left(\sum_{i=1}^{m_{0}} \lambda_{i}^{-p}\right)^{q /(p-q)}}+\sum_{i=m_{0}+1}^{M} \lambda_{i}^{p q /(p-q)}
$$

It is easy to check that

$$
\sum_{i=1}^{M}\left|f_{i}\right|^{p}=1
$$

Thus,

$$
\begin{aligned}
\sigma_{n}(T)^{q} & \geq \inf \left\{\sum_{i=1}^{M}\left|f_{i}\right|^{q} \lambda_{i}^{q} \eta_{i}: \eta_{i} \in[0,1], \sum_{i=1}^{M} \eta_{i}=M-n\right\} \\
& =L^{-q / p} \inf \left\{K^{q /(p-q)} \sum_{i=1}^{m_{0}} \eta_{i}+\sum_{m_{0}+1}^{M} \lambda_{i}^{\frac{p q}{p-q}} \eta_{i}: \eta_{i} \in[0,1], \sum_{i=1}^{M} \eta_{i}=M-n\right\} .
\end{aligned}
$$

Because the definition of m_{0} implies

$$
\lambda_{m_{0}+1}^{-p}>\frac{\sum_{j=1}^{m_{0}} \lambda_{j}^{-p}}{m_{0}-n}=K^{-1},
$$

we have

$$
\lambda_{i}^{p q /(p-q)} \leq \lambda_{m_{0}+1}^{p q /(p-q)}<K^{q /(p-q)}
$$

for all $m_{0}+1 \leq i \leq M$. Clearly, the infimum above is attained when $\eta_{m_{0}+1}=\cdots=\eta_{M}=1$. Consequently, we have

$$
\begin{aligned}
\sigma_{n}(T)^{q} & \geq L^{-q / p}\left(K^{q /(p-q)}\left(m_{0}-n\right)+\sum_{i=m_{0}+1}^{M} \lambda_{i}^{\frac{p q}{p-q}}\right) \\
& =L^{(p-q) / p} .
\end{aligned}
$$

Therefore

$$
\sigma_{n}(T)=L^{1 / q-1 / p}=\left(\frac{\left(m_{0}-n\right)^{p /(p-q)}}{\left(\sum_{i=1}^{m_{0}} \lambda_{i}^{-p}\right)^{q /(p-q)}}+\sum_{i=m_{0}+1}^{M} \lambda_{i}^{p q /(p-q)}\right)^{\frac{1}{q}-\frac{1}{p}}
$$

as desired.

3. Remaining cases

The proofs for the remaining cases are straightforward.
Remark 4. The above proof of the theorem also shows that for $q \leq p$

$$
\begin{aligned}
& \sup _{f \in B_{p}} \inf \left\{\sum_{i=1}^{M}\left|f_{i}\right|^{q} \lambda_{i}^{q} \eta_{i}: \sum_{i=1}^{M} \eta_{i}=M-n ; 0 \leq \eta_{1}, \eta_{2}, \ldots, \eta_{M} \leq 1\right\} \\
& \quad=\inf \left\{\sup _{f \in B_{p}} \sum_{i=1}^{M}\left|f_{i}\right|^{q} \lambda_{i}^{q} \eta_{i}: \sum_{i=1}^{M} \eta_{i}=M-n ; 0 \leq \eta_{1}, \eta_{2}, \ldots, \eta_{M} \leq 1\right\},
\end{aligned}
$$

which can be compared with the minimax theorem of [1] (Theorem 1). This may be of independent interest.

References

[1] G. Fang, L. Qian, Approximation characteristics for diagonal operators in different computational settings, J. Approx. Theory 140 (2) (2006) 178-190.
[2] G. Fang, L. Qian, Minimax Theorems and Best n-term Approximation in Finite-dimensional Spaces (preprint).
[3] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
[4] S.B. Stechkin, On absolute convergence of orthogonal series, Dokl. Akad. Nauk SSSR (NS) 102 (1955) 37-40 (in Russian).
[5] A.I. Stepanets, Approximation characteristics of the spaces S_{ϕ}^{p} in various metrics, Ukraïn. Mat. Zh. 53 (8) (2001) 1121-1146. Translation in Ukrainian Math. J. 53 (2001) 8, pp. 1340-1374.

[^0]: * Corresponding address: Department of Mathematics, P.O. Box 441103, University of Idaho, Moscow, ID 838441103, United States.

 E-mail address: fuchang@uidaho.edu.

