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Abstract

This paper determines the exact value of the n-term approximation of a diagonal linear operator from
l[’f[ to lé", 0 < p, g < oo using an elementary method.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

LetT: (x1,x2,...,xy) = (A1x1, A2Xx2, ..., Ayxp) be adiagonal linear operator from lg” to

lé"’ ,0 < p, g < oo. Following Stechkin [4], for | <n < M, we define the n-term approximation
of T as the quantity

1/q
sup inf Z |Ai fild , g <0
on(T) = | reB, In \igr,
sup inf sup |A; fil, q =00
feBy Inigr,
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where B), is the unit ball of / 2’1 , and I}, is an arbitrary subset of {1, 2, ..., M} with n elements.
Clearly, to determine the n-term approximation of a diagonal linear operator, we can assume that
the A; are non-negative and non-increasing. Indeed, we do make this assumption for the rest of
the paper.

We are interested in finding the exact value of 0,(7T) for all 0 < p,qg < oo. When
0 < p < g < oo, Stepanets [5] proved that

_ml/
0,(T) = max (m—m) "

n<m<M m. l/p-
()
i=1

Fang and Qian [1] gave a different proof for the case p = ¢ based on Ky Fan’s minimax
theorem [3]. It is therefore a natural question to ask what the exact value of 0, (T) is when
p > q.Indeed, Fang and Qian [2] proved that when T is the identity operator from / 2’1 to IM,

0.(T) = (M —n)'/4M~1/7 for 0 < ¢ < p < 0o, and made the following conjecture:
Conjecture 1 (Fang and Qian [2]). For the diagonal operator T: lﬁ‘,’l = lé”, T(x1,x2,...,
xp) = (Aixp, Aaxo, .., Apxy), 0 < g < p < 00,

1/q

m-—n

L —
>t
i=1

0 (T) = M"47Y/P max
n<m<M
The goal of this paper is to answer this question by proving

Theorem 2. Let T: (x1, X2, ..., xp) = (M1X1, AaXx2, ..., Ayxpy) be a diagonal linear operator
fromlg” tolé”, withh >l >--->Ay>0.Forl <n<M,

(m —n)l/e 0 _
ninmafo NG <p=<g<X
(£+)
i=1
! 0
N T <p<g=x
n+l 1/p
ZM”
o’n(T) = I1+15 p =q =00

(mo —n)P/ (P~ Z )qu/(p )

q/(pq) O<g<p=<oo
< i=mop+1

M l/q
(m 0<g<pmso
L
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where my is the largest integer m such thatn < m < M and
m
_ o\ P 4
(m —n)A," < Z)‘j .
j=1

From Theorem 2 it is clear that Conjecture 1 is not valid.

Remark 3. The result for the case 0 < p < g < oo is due to Stepanets [5]. However, the proof
given in this paper is much simpler. When p = g < 0o, we have

—n)l/p
0,(T) = max (m = n)

n<m<M (m_ _ N\1/P’
(£)
i=1

On the other hand, by taking the limit g — p~ for the case 0 < ¢ < p < 00, we can also obtain
the exact value of 0, (T') for the case p = g < oo, that is

Q=
=

_ )P/ (p—q) M
ou(T) = tim | 0= + Y o
g—p- my N4/ i
(Z )\'i P) l=m0+1
i=1

(mo —n)'/?
= max ﬁ,)\.m0+l,)\.m0+2,...,kﬁ/[
(%)
i=1
(mo —nm)!/?

mgo _ 1/p7
(E+)
i=1

where the last equality follows from the definition of m. This last expression is more explicit.

2. Proof

1.Case0 < p < g < o0
We assume p < g because the subcase p = g can be handled by taking the limit g — p™.
Because the supremum can be attained, there exists an f with Zfi 1 1fil? =1 such that

M—n

on(M)? = > | friyni|, (1)
i=1

where {| fz)A= ()|} 1s a non-decreasing arrangement of {| f; A;|}.
First, we claim that foral M —n <i < M,

| fr@y Az )| = | fr—n)Ax (M—n) |- 2
Indeed, because {| f7(i)Az ()|} is a non-decreasing arrangement of {| f;A;|}, we have

|fn(i))»ﬂ(i)| > |fn(M7n))\n(M7n)| foralM —n <i < M.
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Suppose for some M —n < ig < M

| fr—myraeM=m)| = | faM=ntDAeM—n+D] = - = | fatio=1)Anio—D| < | fr(io)An(io)l-

» p /P
Denote o = (Z#,O | e )P+ | Frio—) 1P Ao - l)kﬂ(m)) . Because

M
D 1”1 oA Gty < D 1 P =1

i#ig i=1
we have o > 1. Define g such that
i) = o fxayls i # i
0 0‘|fﬂ(i0—l)Mn(io—l))»;(lio)v i =ip.
Clearly, llgll, = I fll, = 1. Now, for this g, {gz@)Ax()} is a non-decreasing rearrangement of
{giAi}. Thus,
mf Z |)\tgt|q Z |gn(1))\n(z)|q
ngF

Because gr(;) = a| fr@l forall 1 <i <M —n < ip, we have

M—n

inf »  1igil? = o Z | friyhald = a?on(T)?.
1¢F

This is impossible because o > 1. Thus, forall M —n < i < M, (2) holds.
Next, we claim that for all 1 < i < M — n, either f;) = 0, or (2) holds. Suppose that for
some 1 < jo < M — n, we have

0 < /2o Az < | frGorDAnGo+)| = -+ = [ [z Aranyl. 3

Consider the strictly convex function

F(xi,x0,...xp—p) = Z xq/pki(l)
On the convex domain

M—n M
{(xl,xz,u-,an) eRM™: N xi<1— > frwl”

i=1 i=M-—n+1
1 \?
0<x < (Ifn(M—n)l)»n(M—n))»n(,-)) ,

F attains its maximum only at an extreme point. Because by the assumption (3), the point

Ufz )P =15 oo L fra=m)|1P)
is inside the above convex set, but not an extreme point thereof, there exists an extreme point
(8 (1)> &m2) -+ -+ Ewv—my) With either gz ) = 0 or

grirniy = | frM—m) | Ax(M=n)
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such that
F( fa)? 1 fzl?s oo faa—n)|P) < F(g,’,’(l), g;:(z)a ) gg(M—n))'
By defining gy = | fa@)| for M —n <i < M, we have || g|l, < 1 and
M—n
iII"lf Z nigil? = Z |gﬂ(i))"7f(i)|q = F(g;:(l)’ g;f@)v cees g;f(M_n))
"igly, i=1
> F(l a5 1 fz@)|?s oo [ fra-m)|P) = 0u(T)?,
which is impossible. Hence, either fy = 0 or | friyAr )| = | fr =) Aem—n)l.
Therefore, we have a constant ¢ > 0 and anindex set I C {1,2, ..., M}suchthat|f;| = cki_l

fori € I and f; = 0 fori ¢ I. Together with Zlﬂil | fil? = 1, we have

-1/p
—1 —p .
|fi] = A (E A ) , 1el

iel

0, idl

For this f we have

M—n . 11| —n
Z | friyral = ——77-
i=1 (Z )"ip>

iel

Because the A; are positive and non-increasing, the optimal value is attained if / is of the form
I ={1,2,...,m} for some m > n. Hence

o(T)? = sup ———

as desired.

2.Caseqg < p <00
It is possible to use the same approach as in the previous case. However, the following proof
is even simpler. In fact, the only trick is the simple fact that

M M
inf{ZaiSi - 8; € {0, 1}:25,- :M—n}
i=1 i=1
M M
:inf{Zami:ni €011, m =M—n}
i=1 i=1

which is true because a linear function on a convex domain attains its extreme value at an extreme
point. Using this simple fact, we have

M M

0,(T)? = sup inf Z |fi19078; : 8 € {0, 1}, 251' =M—n

— 4

feBy i= i=l1

M M
= sup inf{me,\?m mi €10, 1],2;7,- = M—n}.
i—1 i=1

feB,
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Applying Holder’s inequality gives

o (T)?

We define n;

where my is defined in the statement of the theorem. Clearly, n; € [0, 1] forall 1 <i < M.

ni =

IA

feBy

M (p=q)/p
inf (Zklpq/(p—q)n{?/(p—q))
i=1

such that

(mo — n)ki_p

mo ’

1<i<myg

mo<i <M,

choosing n; as defined in (5), we have from (4) that

on(T)! <

(mo — n)P/P—9

mo+1

To prove the other direction, we choose

;
-

where

mo
= (mo — n) (Z)‘i_p>
i=1

VP G=0371 1 <

1/pya/(p=q)
i )

It is easy to check that

M
doIfir =1
i=1

Thus,

on(T)

v

M
inf{zm

i=1

L~ q/plnf{

M

rq/(p—q)
mo 4/(P_51)+__Z )Li
(E)
i=1

sup 1nf{2|f,|qkqnl n; € [0, 1], Zrh =

M

:Zm =M
i=1

(p—q)/p

=my
mo+1<i<M,
- p/(p—q)
and L = (mo —m)
mo q/(p—q)
(£47)
i=1
M
938 n; < mi € [0, 1], Zm =M —n}

mo

K4/ (= Q)Zn + Z by

i=1

mo+1

P
p=

v

-n;0<n <1

(p— q)
+ Z )qu/
i=mgp+1

M
€0, 11,) mi=M~—
i=1

651

“4)

(&)

(6)
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Because the definition of m¢ implies

mo —p
].ZIA/
—_ = _1
AP s =K1
mo+1 mo —n
we have

Apa/r—a) - )qui(f—q) < K1/(P-0
1 _ mgo

forall mg + 1 < i < M. Clearly, the infimum above is attained when 7,041 = --- =ny = 1.
Consequently, we have
M P4
on(T)! > L7 | K9P~D (mg — n) + Z A
i=mo+1
— LWP=D/p.
Therefore

on(T) = LVa-1/r —

(mo — n)P/(P=® z pa/(p—q)
+ D M :

mo q/(p—q) .
(Z )L'—p> i=mg+1
i

i=1
as desired.

3. Remaining cases
The proofs for the remaining cases are straightforward.

Remark 4. The above proof of the theorem also shows that for g < p

M M
sup inf 3 | fil%h{ni Y ni=M—n;0<n,m,....0m <1
feBp i=1 i=1

M M
= inf{ sup Z|f,~|‘1)»?m :Zm =M-n0<n,m,....,ny <1y,
feBp =] i=1

which can be compared with the minimax theorem of [1] (Theorem 1). This may be of indepen-
dent interest.
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