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Abstract

We establish upper and lower bounds for the metric entropy and bracketing entropy of the class of d-
dimensional bounded monotonic functions under Lp norms. It is interesting to see that both the metric
entropy and bracketing entropy have different behaviors for p < d/(d − 1) and p > d/(d − 1). We apply the
new bounds for bracketing entropy to establish a global rate of convergence of the MLE of a d-dimensional
monotone density.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Shape constrained functions appear very commonly in non-parametric estimation in statistics
via renewal theory and mixing of uniform distributions. A class of multivariate functions of
interest in applications is the class of “block-decreasing” densities; see e.g., [15,16,1]. It consists
of bounded densities on Rd that are decreasing in each variable. We denote by Fd the collection
of non-negative functions on [0, 1]d which are bounded by 1, and monotonic in each variable, that
is, monotonic along any line that is parallel to an axis. As is well known, the rate of convergence
of non-parametric estimators such as the maximum likelihood estimator (MLE) is determined by
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the metric entropy and bracketing entropy bounds for an appropriate related class of functions;
see the definitions below.

In this paper, we provide upper and lower bounds for the metric entropy log N(ε, Fd , ‖ · ‖p)

and the bracketing entropy log N[ ](ε, Fd , ‖ · ‖p) for 1�p < ∞, where ‖ · ‖p is the Lp norm
under Lebesgue measure, N(ε, Fd , ‖ · ‖p) and N[ ](ε, Fd , ‖ · ‖p) are defined as follows:

N(ε, Fd , ‖ · ‖p) := min

{
m : ∃f1, f2, . . . , fm s.t. Fd ⊂

m⋃
k=1

Bp(fk, ε)

}
,

where Bp(fk, ε) = {f ∈ Fd : ‖f − fk‖p �ε}, and

N[ ](ε, Fd , ‖ · ‖p)

:= min

{
m : ∃f

1
, f 1, . . . , f m

, f m ∈ L0
d s.t. ‖f k − f

k
‖p �ε, Fd ⊂

m⋃
k=1

[f
k
, f k]

}
,

where L0
d is the set of all measurable functions on [0, 1]d , and

[f
k
, f k] =

{
g ∈ Fd : f

k
�g�f k

}
.

Note that in the definition of N(ε, Fd , ‖ · ‖p) we do not require the centers of the balls f1, …, fn

to belong to Fd . Likewise, in the definition of N[ ](ε, Fd , ‖ · ‖p), the functions f
k

and f k do not
have to belong to Fd .

Our main result is the following:

Theorem 1.1. For 1�p < ∞ and d �2, there exist constants c1 and c2 depending only on p
and d, such that if (d − 1)p �= d , then

c1ε
−� � log N(ε, Fd , ‖ · ‖p)� log N[ ](ε, Fd , ‖ · ‖p)�c2ε

−�,

where � = max{d, (d − 1)p}. If (d − 1)p = d , then

c1ε
−d � log N(ε, Fd , ‖ · ‖p)� log N[ ](ε, Fd , ‖ · ‖p)�c2ε

−d(log 1/ε)d . (1)

The new bracketing entropy bounds have implications for the rate of convergence of the MLE
of a “block decreasing” density as will be shown in Section 5.

Remark 1.2. We believe that in the critical case (d −1)p = d, the logarithmic factor in the upper
bound in (1) is not needed, and prove in Theorem 4.1 that this is indeed so for regular metric
entropy under the Lp norm, provided (d, p) �= (2, 2). The challenge in the case p = d = 2 is
somewhat surprising. We conjecture that c1ε

−2 � log N(ε, F2, ‖ · ‖2)�c2ε
−2 for some positive

constants c1 and c2.

Now, let us point out some connections with known results:
Theorem 1.1 is related to known results as follows:
(i) When d = 1, Fd is just the class of probability distribution functions, and the entropies are

known to be of the order ε−1; see e.g. [18, Theorem 2.75, p. 159]. So, in some sense, the results
in this paper generalize the known results for d = 1.
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(ii) The result for the case p = 1 is also known. Indeed, it is easy to see that if f is a non-negative
block-decreasing function on Rd , then the set B = {(x1, . . . , xd, y) ∈ Rd+1 : y�f (x1, . . . , xd)}
satisfies the following condition: for all x = (x1, . . . , xd+1) ∈ B and z = (z1, . . . , zd+1) with
z1 �x1, . . . , zd+1 �xd+1, we have z ∈ B. Such sets are called lower layers in [11,12]. Similarly,
the sets {x ∈ [0, 1]d : f (x)� t}, t > 0, are lower layers in [0, 1]d . On the other hand, if B is a
lower layer set with B ∩ [0, 1]d+1 �= ∅, then the function defined by

f (x1, . . . , xd) = sup{y : (x1, . . . , xd, y) ∈ B ∩ [0, 1]d+1}

is block-decreasing and bounded by 1. In the case p = 1, metric entropy bounds for the collection
of lower layers were studied in [12, Theorem 8.3.2, p. 266]. Thus, Theorem 1.1 can also be viewed
as the Lp version of entropy bound of lower layers. These connections were exploited by Polonik
[15,16] as will be discussed further in Section 5.

(iii) The result for the upper bound of the regular entropy estimate in the case p < d/(d − 1)

can be obtained by applying a general result for Besov spaces. In fact, for any f ∈ Fd , because
f is bounded and monotonic along each line that is parallel to an axis, it is of bounded variation
in each variable. Therefore, by [19, Theorem 5.3.5] f is of bounded variation. From this, we
immediately obtain that Fd ⊂ B1

1,∞([0, 1]d) (cf. [13, Section 2.2.2 (12)]). Now, a general result
on entropy in Besov spaces (cf. [13, Theorem 3.5], or [7, Corollary 1]) gives an upper bound for
the regular entropy in the case p < d/(d − 1). This connection also partially explains why the
entropy behaves differently in the case p < d/(d − 1) and the case p > d/(d − 1).

(iv) It should also be noted that when d > 1, Fd is much larger than the class Dd of d-
dimensional probability distributions. Indeed, a block increasing function is a function with non-
negative and bounded first order partial differences; while a d-dimensional distribution is a function
of non-negative and bounded mixed partial differences up to order d. For example, the block
increasing function f (x, y) = x + y − xy on [0, 1]2 is not a probability distribution because
its mixed partial difference is negative. The boundedness and non-negativity of the mixed partial
difference have a huge impact on the entropy bounds even when d = 2. Indeed, our result in the
case p = d = 2 says

c1ε
−2 � log N(ε, F2, ‖ · ‖2)�c2ε

−2[log(1/ε)]2

for some positive constants c1 and c2; while Blei et al. [8] recently proved that

c1ε
−1[log(1/ε)]3/2 � log N(ε, D2, ‖ · ‖2)�c2ε

−1[log(1/ε)]3/2.

As d increases, the difference becomes even bigger.
The results of this paper have a number of statistical implications. This is clarified by the

following corollary giving upper bounds on bracketing entropies measured with respect to the
‖ · ‖Q,p norm where ‖f ‖Q,p ≡ {Q|f |p}1/p.

Corollary 1.3. Suppose Q is a probability measure on [0, 1]d with bounded Lebesgue density q;
thus ‖q‖∞ = supx∈Id q(x) < ∞. Then if (d − 1)p �= d there is a constant C2 = C2(p, ‖q‖∞)

such that

log N[ ](�, Fd , ‖ · ‖Q,p)�C2�
−�,
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where � = max{d, (d − 1)p}. If (d − 1)p = d , then

log N[ ](�, Fd , ‖ · ‖Q,p)�C2�
−d(log 1/�)d

for a (different) constant C2 = C2(p, ‖q‖∞).

By the bracketing Glivenko–Cantelli theorem (see e.g. [18, Theorem 2.4.1, p. 122] or [12,
Theorem 7.1.5, p. 235]), Corollary 1.3 with p = 1 implies that Fd is a P0-Glivenko–Cantelli
class for any probability measure P0 on [0, 1]d with bounded Lebesgue density p0. The bracketing
entropy estimate (and its proof) gives the lower bound estimate of the shattering dimension of
Fd [17], that is v(Fd , t)�ct−(2d−2), and lower bound estimate of Kolchinskii–Pollard entropy
D(Fd , t), that is D(Fd , t)�ct−(2d−2). When d > 2, v(Fd , t) �= O(t−2) and D(Fd , t) �=
O(t−2). So by [17, Theorem 1.1] or the Sudkov–Chevet Theorem ([12, Theorem 2.3.5, p. 33])
we immediately conclude that Fd is not a P -Donsker class when d > 2 and P is the uniform (i.e.
Lebesgue) measure on [0, 1]d . In the case d = 2, it follows from the results of [12, Section 12.4,
pp. 373–388], that F2 is also not P -Donsker for P the uniform distribution: Letting F2 denote
the collection of non-negative block decreasing functions bounded by 1 on [0, 1]d , we have
F2 ⊃ {1C : C ∈ LL2,1} using the notation of [12, Section 8.3]. Thus, with Gn ≡ √

n(Pn − P)

and ‖Gn‖F ≡ supf ∈F |Gn(f )|, we have

‖Gn‖F2 �‖Gn‖LL2,1 ,

and hence by [12, Theorem 12.4.2, p. 375], for the uniform distribution P on [0, 1]2, for every
� > 0 there is a � > 0 such that

Pr(‖Gn‖F2 ��(log n)3/4)�Pr(‖Gn‖LL2,1 ��(log n)3/4)�1 − �

for all n sufficiently large. This contradicts F2 being P -Donsker for the uniform distribution P.
(See [12, p. 375], for further discussion of the optimality of the (log n)3/4 term in this argument.)

The remainder of the paper is organized as follows. First, we prove the lower bound for regular
entropy by constructing a well-separated set using a combinatorial argument. Next, we obtain the
upper bound for bracketing entropy using a constructive proof, revealing the difference of entropy
growth between the cases p < d/(d − 1) and p > d/(d − 1). Then we turn to the critical case
p = d/(d − 1), and use the result for the case p = 1 and the metric entropy estimate of convex
hulls to remove the extra logarithmic factor in the upper bound for the regular entropy. Finally,
we apply the bracketing entropy estimate to establish a global rate of convergence of the MLE of
a d-dimensional “block-decreasing” density.

2. Lower bound

In this section, we obtain the lower bound estimate, namely

Proposition 2.1. For p�1, there exists a constant c1 > 0 such that

log N(ε, Fd , ‖ · ‖p)�c1ε
−�,

where � = max{d, (d − 1)p}.

Proof. For convenience, we assume ε = 2−n for some positive integer n. We divide
[0, 1]d into ε−d small cubes of side-length ε. Define g on [0, 1]d , such that on each open cube
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i=1 (kiε, kiε + ε), 0�ki < 2n, 1� i�d ,

g(x) = (k1 + k2 + · · · + kd + 1)ε

3d
± ε

6d
.

Clearly, there are 2ε−d
different ways to define g, and each can be extended to a function in Fd .

Let Gd be the collection of these extended functions.
For each g ∈ Gd define

B(g) = {h ∈ Gd : there are at most 2−4ε−d open cubes on which g �= h}.
Since

(
m
l

)
�(me/l)l and (16e)1/16 �21/2, it is easy to check that B(g) contains no more than(

ε−d

2−4ε−d

)
�2ε−d/2 elements. Thus, we can find N = 2ε−d/2 functions g1, g2, …, gN , such that if

i �= j , then B(gi) and B(gj ) are disjoint. Clearly

‖gi − gj‖1 � ε

3d
· 1

24 = ε

48d
.

Hence, N((48d)−1ε, Fd , ‖ · ‖1)�2ε−d/2, which implies

N(ε, Fd , ‖ · ‖p, )�N(ε, Fd , ‖ · ‖1, )�ec1ε
−d

for some constant c1 > 0 and all p�1.
When p > d/(d − 1), this lower bound is not sharp. In order to improve it, we will con-

struct a different well-separated subset. We define q(x) on [0, 1]d as follows: on each open cube∏d
i=1(kiε, kiε + ε) that satisfies k1 + k2 + · · · + kd = ε−1, k1, k2, . . . , kd �0, we define q(x) =

1
2 ± 1

2 . Clearly, q(x) can be extended to a function in Fd . Now, because there are cε1−d qualified

cubes, where c is a constant depending only on d, there are 2cε1−d
different functions q(x). The

same combinatorial argument as the one given above shows that there are at least m = 2cε1−d/2

functions q1, q2, . . . , qm, such that |qi − qj | = 1 on at least cε1−d/24 cubes, i �= j . Thus,

‖qi − qj‖p �
(cε

24

)1/p

.

This implies that

N((c2−4ε)1/p, Fd , ‖ · ‖p)�2cε1−d/2,

which further implies

N(ε, Fd , ‖ · ‖p)�ec1ε
−(d−1)p

,

for some constant c1 > 0 when p > d/(d − 1). �

3. Upper bound

In this section, we obtain an upper bound through a constructive proof. We will prove

Proposition 3.1. For p�1, p �= d/(d − 1), there exists a constant c2 > 0 such that

log N[ ](ε, Fd , ‖ · ‖p)�c2ε
−�,
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where � = max{d, (d − 1)p}. For p = d/(d − 1), there exists a constant c2 > 0 such that

log N[ ](ε, Fd , ‖ · ‖p)�c2ε
−d(log 1/ε)d .

3.1. Construction

For convenience, we introduce the notion

�(f, I ) = sup{f (t) : t ∈ I } − inf{f (t) : t ∈ I },
where I is any subset of [0, 1]d .

If p = 1, we choose K = 2d ; otherwise, we choose K = 2�, where � = 1
2 [d −1+1/(p −1)].

For any given ε = 2−n, n ∈ N, let l be the integer satisfying K−l �ε < K−l+1.
For each f ∈ Fd , we construct f and f as follows. First, we partition [0, 1)d into ε−d cubes of

side-length ε. (All the cubes are of the form
∏d

i=1[ai, bi).) A cube I0 of side-length ε is selected
if �(f, I0)�Kε. For each cube that is not selected, we partition it into 2d cubes of equal size. In
general, suppose we have a cube Ii of side-length 2−iε. If �(f, Ii)�Ki+1ε, we select the cube;
otherwise, we partition the cube into 2d smaller cubes. This process continues until i = l. In
this case, we always select the cube. Clearly, each point in [0, 1)d uniquely belongs to one of the
selected cubes.

On each selected cube I of side-length 2−iε, 0� i < l, we define

f = Ki+1ε

⌊
infx∈I f (x)

Ki+1ε

⌋
, f = Ki+1ε

⌈
supx∈I f (x)

Ki+1ε

⌉
.

On each selected cube of side-length 2−lε and on [0, 1]d \ [0, 1)d , we define f = 1 and f = 0.

Clearly, f �f �f .

Let S = {f : f ∈ Fd}, and S = {f : f ∈ Fd}. We will estimate ‖f − f ‖p, and the

cardinalities |S| and |S| of S and S, respectively.

3.2. Bound for ‖f − f ‖p

For each i ∈ N, let Ui be the union of the selected cubes of side-length 2−iε. We first bound
the measure of Ui .

Let si be the number of cubes of side-length 2−iε that have been selected, and ni be the number
of cubes of side-length 2−iε that have not been selected. Clearly, by the construction of f and f ,

we have si + ni = 2dni−1. In particular, si �2dni−1.
Now we try to estimate ni−1 for i�1. If a cube I = ∏d

j=1[aj , bj ) of side-length 2−i+1ε is not

selected, then �(f, I ) > Kiε. By the monotonicity of f along each variable, there exists 1�j �d,
such that on the edge Aj−1Aj , we have �(f, Aj−1Aj) > Kiε/d , where

Aj = (b1, . . . , bj , aj+1, . . . , ad).

Thus, for ni−1 cubes of side-length 2−i+1ε, there are ni−1 disjoint edges on which �(f, ·) >

Kiε/d. From these edges, there are at least �ni−1/d� edges that are parallel. Furthermore, from
these parallel edges, there are at least �ni−1(2−i+1ε)d−1/d� disjoint edges that lie on the same line
segment [0, 1] that is parallel to one of the axes. Because f is monotonic along this line segment,
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and the value change is at most 1, we have

�ni−1(2
−i+1ε)d−1/d� · Kiε

d
�1.

Thus, ni−1 �d22(i−1)(d−1)K−iε−d .
Therefore, for 1� i� l, the measure of Ui is bounded above by

si · (2−iε)d � 2dni−1 · (2−iε)d

� 2d · d22(i−1)(d−1)K−iε−d · (2−iε)d

= 2d2(2K)−i .

For i = 0, the measure of U0 is trivially bounded by 1.
Recall that for 0� i < l, |f − f |�2Ki+1ε on Ui . Also, on Ul , we have |f − f |�1. Thus,

‖f − f ‖p
p =

∫
U0

|f − f |p +
l−1∑
i=1

∫
Ui

|f − f |p +
∫

Ul

|f − f |p

� (2Kε)p +
l−1∑
i=1

(2Ki+1ε)p · 2d2(2K)−i + 2d2(2K)−l

� (2Kε)p + 2p+1Kpd2
l−1∑
i=1

(
Kp−1

2

)i

εp + 2d2(2K)−l . (2)

When (d − 1)p < d, we have d − 1 < � < 1
p−1 . So, K = 2� < 21/(p−1). Thus, Kp−1/2 < 1,

and 1
2K

�K−p. Therefore

‖f − f ‖p
p � (2Kε)p + 2p+1Kpd2 · Kp−1

2 − Kp−1 εp + 2d2 · K−pl

�
[
(2K)p + 2p+1Kpd2 · Kp−1

2 − Kp−1 + 2d2
]

εp

� cεp (3)

for some constant c depending only on p and d, where in the second inequality we used the fact
that K−l �ε.

When (d − 1)p > d, we have d − 1 > � > 1
p−1 . So, K = 2� > 21/(p−1), that is Kp−1/2 > 1.

Hence,

‖f − f ‖p
p � (2Kε)p + 2p+1Kpd2 · (Kp−1/2)l

Kp−1/2 − 1
εp + 2d2 · (2K)−l

� (2Kε)p + 2p+1Kpd2

Kp−1/2 − 1
· Kplεp · (2K)−l + 2d2 · (2K)−l

� (2Kε)p + c(2K)−l

� (2K)pεp + cε1+1/�

� c′ε1+1/�,
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for some constants c, c′ > 0 depending only on p and d, where in the third and fourth inequalities
we used the fact 1�Klε < K and in last inequality we used the fact that p > 1 + 1/�.

When (d − 1)p = d, we have Kp−1 = 2. So, we obtain from (2) that

‖f − f ‖p
p � (2Kε)p + 2p+1Kpd2(l − 1)εp + 2d2(Kp)−l

� cεp log 1/ε,

for some constant c > 0 depending only on p and d, where in the last inequality we used the fact
that 1�Klε < K .

Summarizing, we obtain that

‖f − f ‖p �

⎧⎪⎨⎪⎩
cε (d − 1)p < d,

cε(log 1/ε)1/p (d − 1)p = d,

cε
�+1
p� (d − 1)p > d.

(4)

3.3. Bounds for |S| and |S|

We derive the upper bound for |S|. The argument for bounding |S| is almost identical.
Because all the selected cubes of side-length ε are chosen from n0 = ε−d cubes, there are no

more than 2ε−d
different ways of selecting cubes of side-length ε. For 1� i < l, the selected cubes

of side-length 2−iε are chosen from the ni−1 cubes of side-length 2−i+1ε that were not selected in
the previous step, there are no more than 22dni−1 different ways to select the cubes of side-length
2−iε. Once the cubes are selected. For each 0� i < l, the si selected cubes of side-length 2−iε

can be grouped into no more than (2iε−1)d−1 rows. Suppose row-j contains rj selected cubes.
Because the values of f on these rj cubes are in monotonic order, and are all chosen from 0, Kiε,
2Kiε, . . . , mKiε, where m = �K−iε−1�, the number of different ways of assigning values of f

on these rj cubes is bounded by(
rj + �K−iε−1�
�K−iε−1 + 1

)
� max{exp(crj ), exp(cK−iε−1)} < exp(crj ) · exp(cK−iε−1).

Thus, the number of different ways to assign the values of f on the si selected cubes of side-length
2−iε is bounded by

(2i ε−1)d−1∏
j=1

(exp(crj ) · exp(cK−iε−1)) � exp(csi) · exp(c(2d−1K−1)iε−d)

� exp(c′(2d−1K−1)iε−d),

where in the inequality above, we used si �2dni−1, and the estimate ni−1 �d22(i−1)(d−1)K−iε−d

obtained in Section 3.2.
Hence, the total number of realizations of f is bounded by

2ε−d

ec′ε−d
l−1∏
i=1

[
22dni−1 · exp

(
c′(2d−1K−1)iε−d

)]
� exp

(
c′′

l−1∑
i=0

(2d−1K−1)iε−d

)
, (5)

where in the last inequality we again used the estimate ni−1 �d22(i−1)(d−1)K−iε−d .
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When (d − 1)p > d , 2d−1 > 2� = K , we can bound the right-hand side of (5) by

exp
(
c′′′[2d−1/K]lε−d

)
� exp

(
c′′′ε−(�+1)(d−1)/�

)
.

When (d − 1)p = d , the upper bound of the right-hand side of (5) can be bounded by
exp(c′′′ε−d log 1/ε).

When (d − 1)p < d, 2d−1/K < 1, and the upper bound of the right hand of (5) is bounded by
exp(c′′′ε−d).

Summarizing, we obtain

log |S|�

⎧⎪⎪⎨⎪⎪⎩
c′′′ε−d (d − 1)p < d,

c′′′ε−d log 1/ε (d − 1)p = d,

c′′′ε−(�+1)(d−1)/� (d − 1)p > d.

(6)

3.4. Proof of Proposition 3.1

Combining (4) and (6), we have

log N[ ](ε, Fd , ‖ · ‖p)�

⎧⎪⎪⎨⎪⎪⎩
cε−d (d − 1)p < d,

cε−d(log 1/ε)1+d/p (d − 1)p = d,

cε−(d−1)p (d − 1)p > d,

for all ε = 2−n, n ∈ N. The monotonicity of bracketing numbers implies that Proposition 3.1
holds for all 0 < ε < 1.

3.5. Proof of Corollary 1.3

Suppose that [li , ui], i = 1, . . . , M = N[ ](�, Fd , ‖ · ‖p) is a collection of �-brackets for Fd

with respect to ‖ · ‖p. The size of these brackets for ‖ · ‖Q,p is (with � denoting Lebesgue measure
and q the density of Q)

‖ui − li‖Q,p =
{∫

|ui − li |pq d�

}1/p

�‖q‖1/p∞ � ≡ �,

so {[li , ui], i = 1, . . . , M} forms a collection of �-brackets for ‖ · ‖Q,p and it follows that:

log N[ ](�‖q‖1/p∞ , Fd , ‖ · ‖Q,p)� log N[ ](�, Fd , ‖ · ‖p)�c2�
−�.

This yields

log N[ ](�, Fd , ‖ · ‖Q,p)�c2‖q‖�/p∞ �−� = C2�
−�

with C2 ≡ c2‖q‖�/p∞ .

4. Critical case

We believe that the logarithmic factor in Theorem 1.1 is not needed. In this section, we prove
that if we only consider the regular entropy, then when (d, p) �= (2, 2), the logarithmic factor can
indeed be removed.
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Theorem 4.1. For (d, p) �= (2, 2), there exist constants c1, c2 depending only on p and d such
that,

c1ε
−� � log N(ε, Fd , ‖ · ‖p)�c2ε

−�,

where � = max{d, (d − 1)p}.

Proof. In view of Theorem 1.1, it remains to show the upper bound for the case (d − 1)p = d,
d > 2. Let

T = {1A : A = {(x1, x2, . . . , xd) : f (x1, x2, . . . , xd)��}, 0���1, f ∈ Fd}.
Then clearly Fd is the closed convex hull of T, that is Fd = conv(T ).

For any 1A ∈ T , there exists f ∈ Fd , and 0���1 such that

A = {(x1, . . . , xd) : f (x1, . . . , xd)��}.
By otherwise changing variable ti = 1 − xi , we can assume that f is non-decreasing with respect
to every variable xi , 1� i�d . Define fA on [0, 1]d−1 as follows:

fA(x1, x2, . . . , xd−1)=
{

max{t : (x1, . . . , xd−1, t) ∈ A} if {t : (x1, . . . , xd−1, t)∈A}�=∅,

0 if {t : (x1, . . . , xd−1, t)∈A}=∅.

It is easy to check that fA ∈ Fd−1. Furthermore, for all 1A, 1B ∈ T , ‖1A−1B‖p = ‖fA−fB‖1/p
1 .

Thus,

N[ ](ε, T , ‖ · ‖p) = N[ ](εp, Fd−1, ‖ · ‖1).

Therefore, by applying Proposition 3.1 for Fd−1 with p = 1, we have

log N(ε, T , ‖ · ‖p)� log N[ ](ε, T , ‖ · ‖p)�cε−(d−1)p.

Recall a general theorem of [10] (see also [9]) that

log N(ε, conv(S)) = O(ε−�)

whenever log N(ε, S)=O(ε−�) for � > 2. Applying these results we obtain

log N(ε, Fd , ‖ · ‖p) = log N(ε, conv(T ), ‖ · ‖p)�cε−(d−1)p,

for (d − 1)p = d > 2. �

When (p, d) = (2, 2), we have (d − 1)p = 2. It was proved in [14] that

log N(ε, conv(S)) = O(ε−2(log 1/ε)2)

whenever log N(ε, S)=O(ε−2), and there are sets S such that log N(ε, conv(S))�ε−2(log 1/ε)2

while log N(ε, S)=O(ε−2). Note that the bound O(ε−2(log 1/ε)2) is exactly the bound we
obtained earlier using a direct construction. Thus, in the case p=d=2, using convex hulls does
not improve the estimate.
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5. Rates of convergence for the MLE of a block decreasing density

Biau and Devroye [1] showed that the minimax rate of convergence for estimating a bounded
block decreasing density with L1 risk is n1/(2+d), and constructed histogram estimators that attain
this rate. Here is a more precise description of their result. Let FB denote the class of all block
decreasing densities on the unit cube [0, 1]d bounded by B. Define the risk of the estimator f̂n

when the true density is f ∈ B by

R(f̂n, f ) = Ef

{∫
Rd

|f̂n(x) − f (x)| dx

}
,

and the maximum (or “worst case”) risk by

R(f̂n, FB) = sup
f ∈FB

R(f̂n, f ).

The minimax risk is Rn(FB) = inf f̂n
R(f̂n, FB). Biau and Devroye [1] showed that for some

constants C1 and C2,

Rn(FB)�C2

(
C1S

d

n

)1/(d+2)

,

where S ≡ log(1 + B). The resulting minimax lower bound rate of convergence is rmmlb
n =

n1/(2+d) = n	/(2	+1), where 1/	 = d . Biau and Devroye [1] also constructed generalizations of
the histogram estimators of Birge [4] which achieve this rate of convergence.

In the case d=1, the MLE of a decreasing density on [0, M] is well-known to be n1/3-consistent
with respect to Hellinger and L1 metrics: see Birgé [2,3,5]. In case d �2, the rate of convergence
of the MLE of a block decreasing density with respect to L1 has been obtained by Polonik [15,
Theorem 3.4, p. 69], shows that the “silhouette” converges with respect to L1 in a general setting
of multivariate monotone function estimation, while [16, Theorem 2.3, p. 1862], shows that the
silhouette is the MLE for the class of block decreasing densities (which Polonik calls “doubly
monotone” densities in the case d = 2). By the connection between monotone functions with
lower layers and the entropy bounds of [12], it follows that for a bounded block decreasing density
f the bracketing entropy hypothesis (3.3) of [15, p. 69], holds with r = d − 1, and hence [15,
Theorem 3.4] yields (upon noting that Polonik’s �(u)�u as u → 0 for f with support contained
in [0, 1]d )

‖f̂n − f ‖1 =
{

Op(n−1/4 log n), d = 2,

Op(n−1/2d), d > 2.
(7)

To relate this result to the Hellinger metric, recall that the L1 and Hellinger metrics are well-known
to satisfy

h2(p, q)�‖p − q‖1 �2h(p, q);
here, the Hellinger distance h(P, Q) is given by h2(p, q) = ∫ [√p − √

q]2 d
, where 
 is any
measure dominating both P and Q, p and q are, respectively, the densities of P and Q with respect to

. Thus (7) combined with the left inequality in the last display only yields h(f̂n, f ) = Op(n−1/4d)

when d > 2 and h(f̂n, f ) = Op(n−1/8√log n) when d = 2, whereas it is known that the MLE
converges at the rate n1/3 for both the L1 and Hellinger distance when d = 1. Thus, it seems
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worthwhile to see what the entropy bounds of Section 1 imply concerning the convergence rate
of the MLE when d �2.

It is known from Birgé and Massart [6] (see also [18, pp. 326–327], together with Theorem
3.4.1, p. 322) that MLEs have a rate of convergence of at least rmle

n = n	/2 when the bracketing
entropy with respect to the Hellinger metric h of the class of densities P satisfies

log N[ ](�, P, h)� K

�1/	 , � > 0 (8)

with 	 < 1
2 . From the results of [1] it might be guessed that (8) holds for P = FB with 1/	 = d,

and this would lead to the rate of convergence rn = n1/(2d) for the MLE when d �2. Our theorem
1.1 suggests that the rate of the convergence of the MLE (with respect to Hellinger distance) is still
slower than this for d > 2, as is shown in the following proposition. We suppose that X1, . . . , Xn

are i.i.d. f ∈ FB .

Proposition 5.1. Suppose that f̂n is the MLE of a block decreasing density f on [0, 1]d . Then

h(f̂n, f ) =
⎧⎨⎩Op(n

− 1
4(d−1) ) if d �3,

Op(n−1/4 log n) if d = 2.

(9)

Remark 5.2. Although we do not yet have lower bounds, the tightness of the entropy bounds
in Theorem 1.1 together with the “phase change” in the entropies between p = 1 and 2 leads
us to conjecture that n1/2d and n1/4(d−1) are the exact rates of convergence of the MLEs of a
block-decreasing density in L1 and Hellinger metrics, respectively, when d �3.

Proof. We use the results of Birgé and Massart [6] as presented in [18, Section 3.4]. From Theorem
3.4.1, p. 322, with �n taken to be

P = {p a block-decreasing density on [0, 1]d bounded by B}
it follows that we need to establish the inequalities of the first display of p. 323. These follow from
Theorem 3.4.4, p. 327, for the Hellinger distance h by choosing pn = p0 and taking Pn = P: the
resulting bound for EP0‖Gn‖M� with

M� =
{
mp = log

p + p0

p0
: p ∈ P

}
is of the form

J̃[ ](�, P, h)

(
1 + J̃[ ](�, P, h)

�2√n

)
≡ �n(�), (10)

where

J̃[ ](�, P, h) =
∫ �

c�2

√
1 + log N[ ](�, P, h) d�

in view of the discussion on p. 326 and [6, Theorem 1, p. 118]. Since
√

p is block-decreasing
with bound

√
B if p is block-decreasing with bound B, it follows that

log N[ ](�, P, h) = log N[ ](�, P1/2, ‖ · ‖2) = log N[ ](�/
√

B, P1/2/
√

B, ‖ · ‖2),
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where ‖ · ‖2 is the L2 norm (with respect to Lebesgue measure �) and where P1/2 is the class of
block-decreasing functions with bound

√
B, and hence P1/2/

√
B is the class of block-decreasing

functions with bound 1. Thus, for d �3 we calculate, using Theorem 1.1 with p = 2,

J̃[ ](�, P, h) =
∫ �

c�2

√
1 + log N[ ](�, P, h) d�

=
∫ �

c�2

√
1 + log N[ ](�/

√
B, P1/2/

√
B, ‖ · ‖2) d�

�

⎧⎨⎩
∫ �
c�2

√
1 + c2Bd−1�−2(d−1) d�, d > 2,∫ �

c�2

√
1 + c2B�−2(log 1/ε)2 d�, d = 2,

�
{

�−2(d−2), d > 2,

(log 1/�)2, d = 2,

where f (x)�g(x) means f (x)�Kg(x) for some constant K. Plugging this into (10) yields

�n(�) = �−2(d−2)

(
1 + �−2(d−2)

�2√n

)
for d > 2,

�n(�) = log(1/�)2
(

1 + log(1/�)2

�2√n

)
for d = 2.

It is easily verified that when d>2, r2
n�n(1/rn)�

√
n if rn=n

1
4(d−1) . When d=2, r2

n�n(1/rn)�
√

n

if rn = n
1
4 / log n. Thus, the rate of convergence of the MLE is at least n

1
4(d−1) for d > 2, and

n
1
4 / log n for d = 2. �
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