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Abstract
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1 Introduction

Let X(t) for 0 ≤ t ≤ 1 be a centered Gaussian process with covariance kernel K(s, t).

We are interested in the small ball probability of ∥X∥, i.e., P (∥X∥ ≤ ε) as ε tends to

0, where ∥·∥ denotes the norm in L2[0, 1]. A Karhunen-Loève expansion of X(t) yields

∥X∥2 =
∑∞

n=1 anξ
2
n where {ξn}∞n=1 is a sequence of independent standard Gaussian

random variables and {an}∞n=1 is the sequence of eigenvalues of the corresponding

covariance operator A:

(1) Aζ(t) ≡
∫ 1

0

K(s, t)ζ(s) ds = aζ(t)

where ζ ∈ L2[0, 1].

The small ball probability for Gaussian processes in L2 norm, equivalently, for r.v.

A =
∑∞

n=1 anξ
2
n can be expressed as:

(2)

P (∥X∥ ≤ ε) = P
(
A ≤ ε2

)
∼
(
−2πγ2h′′(γ)

)−1/2
exp {γh′(γ)− h(γ)} as ε → 0

where h(γ) = 1
2

∑∞
n=1 log (1 + 2anγ) and ε2 = h′(γ). Here and in what follows x(ε) ∼

y(ε) as ε → 0 means limε→0 x(ε)/y(ε) = 1. This result was first proved by Sytaya

[8] using saddle point approximations to the Laplace transform. See [1] for a nice

probabilistic proof. Notice that (2) only depends on X through the eigenvalues an.

However, even in the event an explicit expression is known for the an, one will typically

encounter difficulties applying (2). For instance, finding expressions for the function

h(γ) and determining the implicit relation γ = γ(ε) are two essential difficulties that

arise. In fact, except in some very special cases, the eigenvalues an cannot be explicitly
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computed. Nevertheless, in instances where we have suitable approximations bn to

the eigenvalues an, we have the following result due to Li [6].

Throughout this article we assume, without loss of generality, that sequences

an, bn, . . . , are positive, non-increasing, and summable; otherwise, r.v.
∑∞

n=1 anξ
2
n is

∞ with probability 1.

Theorem 1.

(3) P

(
∞∑
n=1

anξ
2
n ≤ ε2

)
∼

(
∞∏
n=1

bn/an

)1/2

P

(
∞∑
n=1

bnξ
2
n ≤ ε2

)

as ε → 0, provided
∞∑
n=1

∣∣∣∣1− an
bn

∣∣∣∣ < ∞.

The above theorem of Li’s [6] has been a useful tool to study L2-small ball prob-

abilities. The difficulty in using the theorem is in checking the absolute summability

condition since one needs to know the asymptotic behavior of an well.

The goal of this paper is to first remove this condition from Theorem 1. Then we

use method from complex analysis to show how one can evaluate the infinite product∏∞
n=1 bn/an directly without necessarily knowing each individual an and bn.

The first result is

Theorem 2.

P

(
∞∑
n=1

anξ
2
n ≤ ε2

)
∼

(
∞∏
n=1

bn/an

)1/2

P

(
∞∑
n=1

bnξ
2
n ≤ ε2

)

as ε → 0, provided the infinite product
∏∞

n=1 bn/an converges.
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Remark 1. In Section 3, we will see examples where Theorem 2 can be applied while

Theorem 1 cannot. However, the main point of Theorem 2 is not only to weaken the

assumption on the sequence {an} and {bn}, but also to make the direct computation

in the following theorem possible.

The second result is

Theorem 3. Set ρn = 1/an and νn = 1/bn. Suppose f and g are entire functions

such that the ρn are the only zeros of f , and the νn are the only zeros of g. Assume

for simplicity that ρn, νn are simple zeros for all sufficiently large n. If

(4) max
−π≤θ≤π

∣∣∣∣f(rneiθ)g(rneiθ)
− 1

∣∣∣∣→ 0 as n → ∞

for some sequence {rn} with νn < rn < νn+1 for all sufficiently large n, then

(5) P

(
∞∑
n=1

anξ
2
n ≤ ε2

)
∼
(
|f(0)|
|g(0)|

)1/2

P

(
∞∑
n=1

bnξ
2
n ≤ ε2

)
as ε → 0.

Let us remark that to require f and g to be entire functions is not a big restriction.

While f is usually derived naturally from (1), the entire function g is typically chosen

to be simple, for example, the leading order term of f as |z| → ∞ along some sequence.

Remarkably, Theorem 3 allows us to evaluate the infinite product in (3) exactly

even if one does not know the an. The novelty in the proof of Theorem 3 is the

use of certain complex analytic methods. The proof uses Rouché’s theorem [7] (page

225): if f and g are entire and |f(z)| ≥ |f(z)− g(z)| on some simple closed contour,

then f and g have the same number of zeros counting multiplicity inside this contour.

Another theorem we will need is Jensen’s formula [7] (page 307): if g is an entire
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function such that g(0) ̸= 0, then, for any r > 0,

|g(0)|
L∏

n=1

r

|zn|
= exp

{
1

2π

∫ π

−π

log |g
(
reiθ
)
| dθ
}
.

where z1, z2, . . . , zL are the zeros of g counting multiplicity inside Γ = {z : |z| = r}.

The rest of the paper is organized as follows: in Section 2, we prove Theorem 2;

in Section 3, we present some examples using Theorem 2; in Section 4, we prove

Theorem 3 using Theorem 2; in Section 5, we apply Theorem 3 to obtain the exact

small ball probability for all generalized m-times integrated Brownian motions (see

[2]). With Theorem 3 we are able to show that the exact small ball probability for the

usual m-times integrated Brownian motion is larger than that of the m-times Euler

integrated Brownian motion. This suggests a possible stochastic domination between

the L2-norm of these processes (see the remarks at the end of Section 5).

2 Proof of Theorem 2

In this section, we prove Theorem 2. We begin with a series of lemmas that will be

useful for the proof.

Lemma 1. If an > 0 and
∑

an < ∞. Then
∏∞

n=1(1 + 2anx) ∈ C∞(0,∞).

Proof. Let A(x) = log
∏∞

n=1(1 + 2anx). We prove that A ∈ C∞(0,∞). Formally, we

can write

A(k)(x) =
∞∑
n=1

(−1)k−1(k − 1)!(2an)
k

(1 + 2anx)k
for k = 1, 2, . . .

The equality becomes true if the series converges uniformly on (0,∞). However, this

is easily verified.
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Lemma 2. Let {cn} be a monotone sequence with 0 < cn ≤ 1 for all n ≥ 1. Suppose∑∞
n=1 rn converges. Then for any N < M ≤ ∞,∣∣∣∣∣

M∑
n=N

cnrn

∣∣∣∣∣ ≤ 2 sup
n≥N

∣∣∣∣∣
∞∑
k=n

rk

∣∣∣∣∣ .
This is just a consequence of Abel’s summation formula, and we omit the proof.

Lemma 3. Let A(x) = log
∏∞

n=1(1 + 2anx) and B(x) = log
∏∞

n=1(1 + 2bnx), where

an, bn > 0,
∑

an < ∞ and
∑

bn < ∞, an ≥ an+1 and bn ≥ bn+1 for all n. Suppose

further that
∏∞

n=1 an/bn converges, then

lim
x→∞

[A(x)−B(x)] = log
∞∏
n=1

an
bn

.

Proof. By assumption, we can write an = bn(1+rn), where
∑∞

n=1 log(1+rn) converges.

Then

A(x)−B(x) = lim
k→∞

log
k∏

n=1

1 + 2anx

1 + 2bnx

= lim
k→∞

log
k∏

n=1

(
1 +

2bnx

1 + 2bnx
rn

)

= log
N∏

n=1

(
1 +

2bnx

1 + 2bnx
rn

)
+ lim

k→∞
log

k∏
n=N+1

(
1 +

2bnx

1 + 2bnx
rn

)
.(6)

Note that for 0 < c < 1, and |x| < 1, log(1 + cx) ≥ c log(1 + x). Choose N large

enough so that |rn| < 1 for all n > N . Then the second term on the right is bounded

from below by

lim inf
k→∞

k∑
n=N+1

2bnx

1 + 2bnx
log(1 + rn).
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Applying Lemma 2 for the non-increasing sequence cn = 2bnx/(1+2bnx), we have

k∑
n=N+1

2bnx

1 + 2bnx
log(1 + rn) ≥ −2 sup

n≥N+1

∣∣∣∣∣
∞∑
k=n

log(1 + rk)

∣∣∣∣∣ .
Letting x → ∞ and then N → ∞ on (6), we obtain

lim infx→∞[A(x)−B(x)]≥ log
∞∏
n=1

(1 + rn) = log
∞∏
n=1

an
bn

.

By considering B(x)− A(x) in the same way, we complete the proof.

Lemma 4. Let A(x), B(x), an and bn be as in Lemma 3. Then

xA′(x)− xB′(x) → 0 and x2A′′(x)− x2B′′(x) → 0 as x → ∞.

Proof. We use the same notation rn as in the proof of Lemma 3. By Lemma 1, A(x)

and B(x) are differentiable, and

xA′(x)− xB′(x) =
∞∑
n=1

(
2anx

1 + 2anx
− 2bnx

1 + 2bnx

)

≥
N∑

n=1

1

1 + 2anx
· 2bnx

1 + 2bnx
· rn +

∞∑
n=N+1

1

1 + 2anx
· 2bnx

1 + 2bnx
· log(1 + rn).(7)

Applying lemma 2 twice: first for the non-decreasing sequence cn = 1/(1+ 2anx),

and then for the non-increasing sequence c̃n = 2bnx/(1 + 2bnx), we have

∞∑
n=N+1

1

1 + 2anx
· 2bnx

1 + 2bnx
· log(1 + rn) ≥ −4 sup

n≥N+1

∣∣∣∣∣
∞∑
k=n

log(1 + rk)

∣∣∣∣∣
Letting x → ∞ and then N → ∞ on (7), we obtain

lim infx→∞[xA′(x)− xB′(x)] ≥ 0.
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By considering xB′(x)− xA′(x) in the same way, we have

(8) lim
x→∞

[xA′(x)− xB′(x)] = 0.

Similarly, we write,

x2B′′(x)− x2A′′(x) ≥
∞∑
n=1

1

1 + 2anx
· 2anx

1 + 2anx
· 2bnx

1 + 2bnx
· log(1 + rn)

+
∞∑
n=1

1

1 + 2anx
·
(

2bnx

1 + 2bnx

)2

· log(1 + rn).

Applying the same argument as in the proof of (8) to each of the two series gives

x2A′′(x)− x2B′′(x) → 0.

Lemma 5. Let A(x), B(x), an and bn be as in Lemma 3. Moreover, if y = y(x) is

chosen to satisfy A′(x) = B′(y), then

x ∼ y and [xA′(x)− A(x)]− [yB′(y)−B(y)] → log

(
∞∏
n=1

an
bn

)
as x → ∞.

Proof. By Lemma 3 and Lemma 4, We have

[xA′(x)− A(x)]− [xB′(x)−B(x)] → log

(
∞∏
n=1

an
bn

)
as x → ∞.

Thus, it is enough to show that

[xB′(x)−B(x)]− [yB′(y)−B(y)] → 0 as x → ∞.

To this end, we first observe that A′(x) = B′(y) implies x ∼ y. In fact, by Lemma 4,

we have

xB′(y)− xB′(x) = xA′(x)− xB′(x) → 0(9)
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as x → ∞ (and consequently y → ∞). On the other hand,

(10) |xB′(y)− xB′(x)| =
∣∣∣∣1− x

y

∣∣∣∣ ∞∑
n=1

4b2nxy

(1 + 2bnx)(1 + 2bny)
≥ 1

4

∣∣∣∣1− x

y

∣∣∣∣
for x, y > 1/2b1. Thus, 1− x/y → 0 as x, y → ∞, that is x ∼ y.

To prove that

[xB′(x)−B(x)]− [yB′(y)−B(y)] → 0 as x → ∞,

we use the Mean Value Theorem,

[xB′(x)−B(x)]− [yB′(y)−B(y)] = (x− y)θB′′(θ)

for some θ between x and y.

Note that for x, y > 1/2b1,

|(y − x)θB′′(θ)| =

∣∣∣∣∣
∞∑
n=1

4b2n(y − x)θ

(1 + 2bnθ)2

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

4b2nxy

(1 + 2bnx)(1 + 2bny)

(
1− x

y

)
θ(1 + 2bnx)(1 + 2bny)

x(1 + 2bnθ)2

∣∣∣∣∣
≤
(
1 +

θ

x

)(
1 +

y

θ

) ∣∣∣∣1− x

y

∣∣∣∣ ∞∑
n=1

4b2nxy

(1 + 2bnx)(1 + 2bny)

=

(
1 +

θ

x

)(
1 +

y

θ

)
|xB′(y)− xB′(x)| → 0

as x → ∞, where in the last step, we used (9), (10) and the following simple obser-

vation: If 0 < c < d < e then (1 + ce)/(1 + cd) ≤ (1 + e/d). The lemma follows.

Lemma 6. Let A(x), B(x), an and bn be as in Lemma 3. If x ∼ y as x, y → ∞,

then x2A′′(x)/y2B′′(y) → 1 as x → ∞.
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Proof. Note that

A′′(x)

B′′(x)
− 1 =

x2A′′(x)− x2B′′(x)

x2B′′(x)

The numerator goes to 0 as x goes to ∞ by Lemma 4, while the denominator

x2B′′(x) = −
∞∑
n=1

4b2nx
2

(1 + 2bnx)2

goes to −∞ as x → ∞. Thus,

(11) A′′(x)/B′′(x) → 1 as x → ∞.

To conclude the proof calculate

∣∣x2B′′(x)−y2B′′(y)
∣∣

=

∣∣∣∣∣
∞∑
n=1

4b2nx
2

(1 + 2bnx)2

(
1− y

x

)[(
1 +

y

x

) 1

1 + 2bny
+
(
1− y

x

) 2bny

(1 + 2bny)2

]∣∣∣∣∣
≤
∣∣∣1− y

x

∣∣∣ 2(1 + y

x

) ∞∑
n=1

4b2nx
2

(1 + 2bnx)2
= 2

∣∣∣1− y

x

∣∣∣ (1 + y

x

) ∣∣x2B′′(x)
∣∣

and therefore ∣∣∣∣1− y2B′′(y)

x2B′′(x)

∣∣∣∣ ≤ 2
∣∣∣1− y

x

∣∣∣ (1 + y

x

)
→ 0 as x → ∞,

which together with (11) implies the statement of the lemma.

Proof of Theorem 2. By the Sytaya’s result (2), we have

P (
∑∞

n=1 anξ
2
n ≤ ε2)

P (
∑∞

n=1 bnξ
2
n ≤ ε2)

=

(
x2A′′(x)

y2B′′(y)

)−1/2

exp {[xA′(x)− A(x)]− [yB′(y)−B(y)]} ,

where A and B as in Lemma 1; x and y are defined by ε2 = A′(x) = B′(y). Theorem 2

follows from Lemma 5 and Lemma 6.
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3 Examples

In this section, we present some examples of situation where Theorem 2 can be applied

but Theorem 1 cannot.

First, let us look at the following simple example. Set an = 1/(n + 1)2, and for

m ≥ 1, b2m−1 = b2m = [(2m− 1)(2m)]−1. Then clearly,

∞∏
n=1

an
bn

= 1.

Therefore, by Theorem 2 we have

P

(
∞∑
n=1

anξ
2
n ≤ ε2

)
∼ P

(
∞∑
n=1

bnξ
2
n ≤ ε2

)
as ε → 0+.

However,
∞∑
n=1

∣∣∣∣1− an
bn

∣∣∣∣ = ∞∑
m=1

1

2m
= ∞.

Thus, Theorem 1 is not applicable.

Our second example is the following small ball probability studied by Hoffmann-

Jørgensen, Shepp & Dudley [4].

P

(
∞∑
n=1

anξ
2
n ≤ ε2

)
where ξn are i.i.d. standard normal random variables, and

an =

(
2

⌊
n+ 1

2

⌋
− 1

)−2

,

⌊x⌋ is the greatest integer function (also called the floor function).

We will obtain this small ball probability by comparing it with the L2 small ball

probability of Brownian motion on [0, 1] and by using Theorem 2. It is easy to see that

11



Theorem 1 does not work for this problem since the absolute summability condition

is not satisfied.

Let X be the Brownian motion on [0, 1]. It is known that

P (∥X∥22 ≤ ε2) ∼ 4√
π
ε exp

(
− 1

8ε2

)
.

(Also, see Theorem 4 with m = 0.)

On the other hand, it is known that the eigenvalues are [(n − 1/2)π]−2. Thus, if

we let bn = (n− 1/2)−2, we have

P

(
∞∑
n=1

bnξ
2
n ≤ ε2

)
= P (∥X∥22 ≤ ε2/π2) ∼ 4

π
√
π
ε exp

(
− π2

8ε2

)
,

It is easy to see that(
∞∏
n=1

an
bn

)1/2

=
∞∏
k=1

(
1− 1

4(2k − 1)2

)
=

1√
2
.

Thus, by Theorem 2 we have

P

(
∞∑
n=1

anξ
2
n ≤ ε2

)
∼ 4

√
2π−3/2ε exp

(
− π2

8ε2

)
and this is what was obtained in [4].

Certainly the added benefits of Theorem 2 are not restricted to the above two

examples. For example, by using Theorem 2, Li and Torcaso [5] are able to obtain

the exact L2 small ball probability for the integrated Brownian sheet. However, our

interest is in its application to Theorem 3 in the next section. Theorem 3 enables us

compute the exact small ball probability, without knowing the individual eigenvalues.
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4 Proof of Theorem 3

Now we turn our attention to the proof of Theorem 3. As mentioned in the intro-

duction we will use Rouché’s theorem and Jensen’s formula. The statement of these

theorems can be found in any complex analysis textbook e.g., [7].

Proof of Theorem 3. By Theorem 2 we have

P (∥X∥ ≤ ϵ) ∼

(
∞∏
n=1

bn/an

)1/2

P (∥Y ∥ ≤ ϵ) as ε → 0,

provided that the infinite product converges. Thus, all we need to show is that the

infinite product converges to |f(0)/g(0)|.

It follows from (4) that there exists n0 such that for n > n0, rn is not equal to any

of the ρn and νn. Furthermore, since the limit in (4) is uniform, there exists n1 > n0

such that for all n > n1 and all θ ∈ [−π, π)

|g(rneiθ)| > |g(rneiθ)− f(rne
iθ)|.

By Rouché’s theorem, f(z) and g(z) have the same number of zeros inside the circle

|z| = rn for all n > n1. Moreover the assumption νn < rn < νn+1 implies that the

number of zeros is n. Without loss of generality we assume n1 = 0.

Noting that ρj, νj > 0 we have by Jensen’s formula

(12) |f(0)|
n∏

j=1

rn
ρj

= exp

(
1

2π

∫ π

−π

log |f(rneiθ)|dθ
)

and

(13) |g(0)|
n∏

j=1

rn
νj

= exp

(
1

2π

∫ π

−π

log |g(rneiθ)|dθ
)
.
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Upon dividing (13) by (12) we obtain

(14)
|g(0)|
|f(0)|

n∏
j=1

ρj
νj

= exp

(
1

2π

∫ π

−π

log
|g(rneiθ)|
|f(rneiθ)|

dθ

)
.

Letting n → ∞, the righthand side of (14) converges to 1 and

∞∏
n=1

bn
an

=
∞∏
n=1

ρn
νn

=
|f(0)|
|g(0)|

.

5 An Application: m-times Integrated Brownian

motions

For integer m ≥ 0, let X(t) for 0 ≤ t ≤ 1 be the usual m-times Integrated Brownian

motion:

(15) X(t) =

∫ t

0

∫ sm

0

∫ sm−1

0

· · ·
∫ s2

0

B(s1) ds1 ds2 · · · dsm

where B(t) is a standard Brownian motion. Clearly, E (X(t)) = 0 for all t. It is not

difficult to show that this process has the covariance kernel

K(s, t) = E (X(s)X(t)) =
1

(m!)2

∫ s∧t

0

(s− u)m(t− u)m du.

If we denote by A the associated covariance operator, then A enjoys the properties of

being positive, compact and self-adjoint. Thus, the spectrum for A is well known to

be positive, discrete, real and tends to 0, and the corresponding eigenfunctions form

a complete orthonormal basis for L2[0, 1]. By successively differentiating (1) 2m + 2

times we see the problem is equivalent to the following higher order Sturm-Liouville
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problem:

(16) aζ(2m+2)(t) = (−1)m+1ζ(t), 0 < t < 1

(17) ζ(0) = ζ ′(0) = · · · = ζ(m)(0) = ζ(m+1)(1) = · · · = ζ(2m)(1) = ζ(2m+1)(1) = 0.

What is interesting from a probabilistic point of view is that a large class of

m-times integrated Brownian motions can be developed from the Sturm-Liouville

problem (16) by permuting the evaluation points in the boundary conditions (17) in

the following manner:

(18) ζ(t0) = ζ ′(t1) = · · · = ζ(m)(tm) = ζ(m+1)(tm+1) = · · ·

= ζ(2m)(t2m) = ζ(2m+1)(t2m+1) = 0

where tj ∈ {0, 1} for all j,
∑

j tj = m + 1 and t2m+1−j = 1 − tj. We call this last

condition antisymmetry and it guarantees that the covariance kernel (i.e., Green’s

function) will be positive definite (see [2]).

For a particular antisymmetric choice of {t0, t1, . . . , t2m+1} we will call the as-

sociated centered Gaussian process a generalized integrated Brownian motion and

denote it by X{t0,...,tm}(t). Notice that we do not need to write the indices tj for

j > m since these are determined by the antisymmetry condition. For example, if

t0 = t1 = · · · = tm = 0 then the process is given by (15). If t0 = t2 = · · · = t2m = 0

then the process is called an Euler-integrated Brownian motion since the covari-

ance kernel is just the difference of two Euler polynomials. The covariance op-

erator of Euler integrated Brownian motion has the eigenvalues exactly equal to

bn = ((n− 1/2)π)−2m−2 (see [2]).
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It will be convenient to define

(19) {n0, n1, . . . , nm} = {i : ti = 0} where n0 < n1 < · · · < nm

and

(20) {l0, l1, . . . , lm} = {i : ti = 1} where l0 < l1 < · · · < lm.

In [2] it is shown that as ε → 0

(21) P
(
∥X{t0,...,tm}∥ ≤ ε

)
∼ Cε

1
2m+1

(1−k0(2m+2)) exp{−Dmε
− 2

2m+1}

where

(22) Dm =
2m+ 1

2

(
(2m+ 2) sin

π

2m+ 2

)− 2m+2
2m+1

,

C is a positive constant, and k0 is an integer. Moreover, in the special case of Euler

integrated Brownian motion

P
(
∥X{0,1,0,1,... }∥ ≤ ε

)
∼ Cmε

1
2m+1 exp{−Dmε

− 2
2m+1} as ε → 0

where

(23) Cm = 2(m+1)/2

(
2m+ 2

(2m+ 1)π

)1/2 [
(2m+ 2) sin

π

2m+ 2

](m+1)/(2m+1)

.

We now state

Theorem 4. Suppose X{t0,...,tm}(t) is any generalized m-times integrated Brownian

motion, i.e., a centered Gaussian process whose covariance operator has eigenvalues

and eigenfunctions satisfying the Sturm-Liouville problem (16),(18). Then as ε → 0

P
(
∥X{t0,...,tm}∥ ≤ ε

)
∼ C{t0,...,tm}ε

1
2m+2 exp{−Dmε

− 2
2m+1}
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where

C{t0,...,tm} =
(m+ 1)(m+1)/2

| det(U{t0,...,tm})|
Cm,

Dm and Cm are defined in (22) and (23), respectively, and

U{t0,...,tm} =


1 1 · · · 1
ωn0 ωn1 · · · ωnm

· · · · · · · · · · · ·
ωm
n0

ωm
n1

· · · ωm
nm

 ,

where ωj = exp
(

jπ
m+1

i
)
, and the nj are given by (19).

Proof. Let us fix an antisymmetric sequence t0, t1, . . . , t2m+1 corresponding to the

boundary condition (18) and denote X(t) = X{t0,t1,...,tm}(t) the corresponding gener-

alized m-times integrated Brownian motion.

Let ρ = a−1 and consider the matrix

M(ρ) = (ωk
j e

tkαj)k,j, where αj = ρ1/(2m+2)iωj, and ωj = exp

(
jπ

m+ 1
i

)
.

For future developments it will be appropriate to consider the matrix M(ρ) as a

function of a complex variable. M(ρ) depends on ρ ∈ C as ρ1/(2m+2) so that there

are 2m + 2 different choices. However, the symmetries in M guarantee the value of

M(ρ) does not depend on this choice as long as we keep the same choice for each

element of the matrix. For simplicity take here and in what follows ρ1/(2m+2) lying in

the complex sector −π/(2m+ 2) ≤ arg(ρ) < π/(2m+ 2). Thus, we will take

(24) f(ρ) = det(M(ρ)),

and f is an entire function.

17



Now, let a1 > a2 > · · · be the eigenvalues corresponding to the covariance operator

A of X{t0,t1,...,tm}(t). It is not hard to check that an is an eigenvalue of A if and only if

{a−1
n } is a root of f(ρ). The goal now is to find an entire function g(ρ) that satisfies

the conditions of Theorem 3 and has as its roots the reciprocals of the eigenvalues bn

of the covariance operator B of Euler-integrated Brownian motion. To carry this out

we will first understand the large ρ behavior of f .

Multiply the last m columns of M by eα1 , eα2 , ..., eαm respectively, use αj =

−αm+1+j and some appropriate row permutations to obtain the following matrix:

N =



ωn0
0 · · · ωn0

m ωn0
m+1 ωn0

m+2e
α1 · · · ωn0

2m+1e
αm

ωn1
0 · · · ωn1

m ωn1
m+1 ωn1

m+2e
α1 · · · ωn1

2m+1e
αm

· · · · · · · · · · · · · · · · · · · · ·
ωnm
0 · · · ωnm

m ωnm
m+1 ωnm

m+2e
α1 · · · ωnm

2m+1e
αm

ωl0
0 e

α0 · · · ωl0
me

αm ωl0
m+1e

−α0 ωl0
m+2 · · · ωl0

2m+1

· · · · · · · · · · · · · · · · · · · · ·
ωlm
0 eα0 · · · ωlm

m eαm ωlm
m+1e

−α0 ωlm
m+2 · · · ω2m+1

2m+1


where nj and lj are given by (19) and (20). The antisymmetry implies the number of

0’s and 1’s are the same. Note that

f(ρ) = eαm+1 · · · eα2m+1 detN(ρ).

Further notice for 1 ≤ j ≤ m, Re(αj) ≤ −Re(ρ1/(2m+2)) sin(π/(2m+ 2)) < 0 and this

implies that

|eαj | ≤ exp

(
−Re(ρ1/(2m+2)) sin

(
π

2m+ 2

))
→ 0 as |ρ| → ∞.

Therefore

(25) | detN − detN0| ≤ C exp

(
−Re(ρ1/(2m+2)) sin

(
π

2m+ 2

))
18



where C is a constant depending only on m, and N0 is the matrix obtained from N

by replacing all the entries containing eαj , 1 ≤ j ≤ m, with 0. That is,

N0 =



ωn0
0 ωn0

1 · · · ωn0
m ωn0

m+1 0 · · · 0
ωn1
0 ωn1

1 · · · ωn1
m ωn1

m+1 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
ωnm
0 ωnm

1 · · · ωnm
m ωnm

m+1 0 · · · 0

ωl0
0 e

α0 0 · · · 0 ωl0
m+1e

−α0 ωl0
m+2 · · · ωl0

2m+1

· · · · · · · · · · · · · · · · · · · · · · · ·
ωlm
0 eα0 0 · · · 0 ωlm

m+1e
−α0 ωlm

m+2 · · · ωlm
2m+1


.

It is now easy to see (for details see [2]) that

detN0 = 2det(U)det(V ) cos(ρ1/(2m+2)ω0),

where

U =


1 1 · · · 1
ωn0 ωn1 · · · ωnm

· · · · · · · · · · · ·
ωm
n0

ωm
n1

· · · ωm
nm

 , V =


ωm+1
l0

ωm+1
l1

· · · ωm+1
lm

ωm+2
l0

ωm+2
l1

· · · ωm+2
lm

· · · · · · · · · · · ·
ω2m+1
l0

ω2m+1
l1

· · · ω2m+1
lm

 ,

Thus,

|f(ρ)− 2det(U)det(V ) cos(ρ1/(2m+2)ω0)e
αm+1+···+α2m+1|

≤ C exp

(
Re(αm+1 + · · ·+ α2m+1)− Re(ρ1/(2m+2)) sin

(
π

2m+ 2

))
and, consequently,

(26) |f(ρ)− 2m+1det(U)det(V )
m∏
j=0

cos(ρ1/(2m+2)ωj)|

≤ C ′ exp

(
2m+1∑
j=0

(Re(αj)
+)− |ρ1/(2m+2)| cos( π

2m+ 2
) sin

(
π

2m+ 2

))
,

19



where C ′ is a constant. Denote

g(ρ) = 2m+1det(U)det(V )
m∏
j=0

cos(ρ1/(2m+2)ωj).

Similarly as in (24) the value of g(ρ) does not depend on the choice of the root and

g(ρ) is an entire function. A simple calculation shows | det(U)| = | det(V )| from which

it follows that

(27) |g(ρ)| = 2m+1| det(U)|2
m∏
j=0

| cos(ρ1/(2m+2)ωj)|.

It follows from the properties of cosine that the roots of g(ρ) have the form νn =

((n−1/2)π)2m+2 for n = 1, 2, 3 . . . . and bn = ν−1
n are exactly the eigenvalues of Euler

integrated Brownian motion. (See [2]).

Finally if |ρ| = (kπ)2m+2

(28) |g(ρ)| ≥ C ′′ exp

(
2m+1∑
j=0

(Re(αj)
+)

)
.

Combining (26) and (28) we get the condition (4) using rn = (nπ)2m+2.

Notice that

|f(0)|
|g(0)|

=
(2m+ 2)m+1

2m+1| detU |2

and conclude as ε → 0

P (∥X{t0,t1,...,tm}∥ < ε) ∼ (m+ 1)(m+1)/2

| detU |
P (∥X{0,1,0,1,... }∥ < ε)

Remark 2. It is an easy observation that the constants

C{0,0,...,0} ≥ C{t0,t1,...,tm} ≥ C{0,1,0,1,... }
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This means that the Euler-integrated Brownian motions have the smallest L2 small

ball probabilities, the usual integrated Brownian motions have the largest L2 small

ball probabilities, and the other general integrated Brownian motions have their small

ball probabilities somewhere in between.

Indeed, Hadamard [3] showed, for (m+1)×(m+1) matrices U with complex entries

ajk with |ajk| ≤ 1, det(U) ≤ (m+ 1)(m+1)/2 with equality achieved when U is a Van-

dermonde matrix of (m+1)th roots of unity. Notice det(U{0,1,0,1,... }) = (m+1)(m+1)/2

and thus has the largest possible determinant. Therefore C{t0,t1,...,tm} ≥ C{0,1,0,1,... }

with equality attained only for {t0, t1, . . . , tm} = {0, 1, 0, 1, . . . } or {t0, t1, . . . , tm} =

{1, 0, 1, 0, . . . }.

The antisymmetry assumption provides the following restriction on the set S =

{n0, n1, . . . , nm}: the set S is comprised of exactly one element from each of the pairs

{0, 2m + 1}, {1, 2m}, . . . , {m,m + 1}. Denote by e1 either ω0 or ω2m+1 depending

on which index was taken from the first pair, similarly define e2,e3, etc. Thus, the

Vandermonde determinant

| detU{t0,t1,...,tm}| =
∏

1≤i<j≤m+1

|ej − ei|.

In particular, for the usual integrated Brownian motion e′1 = ω0, . . . , e
′
m+1 = ωm, we

have

| detU{0,0,...,0}| = 2
m(m+1)

2

m∏
k=1

(
sin(

kπ

2m+ 2
)

)m+1−k

.

Symmetry and an application of the law of cosines implies for any 1 ≤ i < j ≤ m+ 1,

|e′i − e′j| ≤ |ei − ej|. It follows that

| detU{t0,t1,...,tm}| ≥ | detU{0,0,...,0}|
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where equality is attained if and only if {t0, t1, . . . , tm} = {0, . . . , 0} or {t0, t1, . . . , tm} =

{1, . . . , 1}.

The above result suggests a possible stochastic dominance between these processes:

stochastically, the L2-norm is the largest in the Euler case, and the smallest in the

usual case. It would be interesting to have this proved or disproved.

Remark 3. We state the results explicitly in the case of m = 1- and 2-times usual

integrated Brownian motions, respectively: as ε → 0

P
(
∥X{0,0}∥ ≤ ε

)
∼ 8

√
2√

3π
ε1/3 exp{−3

8
ε−2/3},

and

P
(
∥X{0,0,0}∥ ≤ ε

)
∼ 36(31/10)√

5π
ε1/5 exp{− 5

6(31/5)
ε−2/5}.
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